4 resultados para High-dimensional Data
em Scielo Saúde Pública - SP
Resumo:
High dimensional dynamical systems has intricate behavior either on temporal or on spatial evolution properties. Nevertheless, most of the work on chaotic dynamics has been concentrated on temporal behavior of low-dimensional systems. This contribution is concerned with the chaotic response of a two-degree of freedom Duffing oscillator. Since the equations of motion are associated with a five-dimensional system, the analysis is performed by considering two Duffing oscillators, both with single-degree of freedom, coupled by a spring-dashpot system. With this assumption, it is possible to analyze the transmissibility of motion between the two oscillators.
Resumo:
ABSTRACT The spatial distribution of forest biomass in the Amazon is heterogeneous with a temporal and spatial variation, especially in relation to the different vegetation types of this biome. Biomass estimated in this region varies significantly depending on the applied approach and the data set used for modeling it. In this context, this study aimed to evaluate three different geostatistical techniques to estimate the spatial distribution of aboveground biomass (AGB). The selected techniques were: 1) ordinary least-squares regression (OLS), 2) geographically weighted regression (GWR) and, 3) geographically weighted regression - kriging (GWR-K). These techniques were applied to the same field dataset, using the same environmental variables derived from cartographic information and high-resolution remote sensing data (RapidEye). This study was developed in the Amazon rainforest from Sucumbíos - Ecuador. The results of this study showed that the GWR-K, a hybrid technique, provided statistically satisfactory estimates with the lowest prediction error compared to the other two techniques. Furthermore, we observed that 75% of the AGB was explained by the combination of remote sensing data and environmental variables, where the forest types are the most important variable for estimating AGB. It should be noted that while the use of high-resolution images significantly improves the estimation of the spatial distribution of AGB, the processing of this information requires high computational demand.
Resumo:
The graphical representation of spatial soil properties in a digital environment is complex because it requires a conversion of data collected in a discrete form onto a continuous surface. The objective of this study was to apply three-dimension techniques of interpolation and visualization on soil texture and fertility properties and establish relationships with pedogenetic factors and processes in a slope area. The GRASS Geographic Information System was used to generate three-dimensional models and ParaView software to visualize soil volumes. Samples of the A, AB, BA, and B horizons were collected in a regular 122-point grid in an area of 13 ha, in Pinhais, PR, in southern Brazil. Geoprocessing and graphic computing techniques were effective in identifying and delimiting soil volumes of distinct ranges of fertility properties confined within the soil matrix. Both three-dimensional interpolation and the visualization tool facilitated interpretation in a continuous space (volumes) of the cause-effect relationships between soil texture and fertility properties and pedological factors and processes, such as higher clay contents following the drainage lines of the area. The flattest part with more weathered soils (Oxisols) had the highest pH values and lower Al3+ concentrations. These techniques of data interpolation and visualization have great potential for use in diverse areas of soil science, such as identification of soil volumes occurring side-by-side but that exhibit different physical, chemical, and mineralogical conditions for plant root growth, and monitoring of plumes of organic and inorganic pollutants in soils and sediments, among other applications. The methodological details for interpolation and a three-dimensional view of soil data are presented here.