54 resultados para Heuristic constrained linear least squares
em Scielo Saúde Pública - SP
Resumo:
Visible and near infrared (vis-NIR) spectroscopy is widely used to detect soil properties. The objective of this study is to evaluate the combined effect of moisture content (MC) and the modeling algorithm on prediction of soil organic carbon (SOC) and pH. Partial least squares (PLS) and the Artificial neural network (ANN) for modeling of SOC and pH at different MC levels were compared in terms of efficiency in prediction of regression. A total of 270 soil samples were used. Before spectral measurement, dry soil samples were weighed to determine the amount of water to be added by weight to achieve the specified gravimetric MC levels of 5, 10, 15, 20, and 25 %. A fiber-optic vis-NIR spectrophotometer (350-2500 nm) was used to measure spectra of soil samples in the diffuse reflectance mode. Spectra preprocessing and PLS regression were carried using Unscrambler® software. Statistica® software was used for ANN modeling. The best prediction result for SOC was obtained using the ANN (RMSEP = 0.82 % and RPD = 4.23) for soil samples with 25 % MC. The best prediction results for pH were obtained with PLS for dry soil samples (RMSEP = 0.65 % and RPD = 1.68) and soil samples with 10 % MC (RMSEP = 0.61 % and RPD = 1.71). Whereas the ANN showed better performance for SOC prediction at all MC levels, PLS showed better predictive accuracy of pH at all MC levels except for 25 % MC. Therefore, based on the data set used in the current study, the ANN is recommended for the analyses of SOC at all MC levels, whereas PLS is recommended for the analysis of pH at MC levels below 20 %.
Resumo:
Acetylation was performed to reduce the polarity of wood and increase its compatibility with polymer matrices for the production of composites. These reactions were performed first as a function of acetic acid and anhydride concentration in a mixture catalyzed by sulfuric acid. A concentration of 50%/50% (v/v) of acetic acid and anhydride was found to produced the highest conversion rate between the functional groups. After these reactions, the kinetics were investigated by varying times and temperatures using a 3² factorial design, and showed time was the most relevant parameter in determining the conversion of hydroxyl into carbonyl groups.
Resumo:
Analytical curves are normally obtained from discrete data by least squares regression. The least squares regression of data involving significant error in both x and y values should not be implemented by ordinary least squares (OLS). In this work, the use of orthogonal distance regression (ODR) is discussed as an alternative approach in order to take into account the error in the x variable. Four examples are presented to illustrate deviation between the results from both regression methods. The examples studied show that, in some situations, ODR coefficients must substitute for those of OLS, and, in other situations, the difference is not significant.
Resumo:
High resolution proton nuclear magnetic resonance spectroscopy (¹H MRS) can be used to detect biochemical changes in vitro caused by distinct pathologies. It can reveal distinct metabolic profiles of brain tumors although the accurate analysis and classification of different spectra remains a challenge. In this study, the pattern recognition method partial least squares discriminant analysis (PLS-DA) was used to classify 11.7 T ¹H MRS spectra of brain tissue extracts from patients with brain tumors into four classes (high-grade neuroglial, low-grade neuroglial, non-neuroglial, and metastasis) and a group of control brain tissue. PLS-DA revealed 9 metabolites as the most important in group differentiation: γ-aminobutyric acid, acetoacetate, alanine, creatine, glutamate/glutamine, glycine, myo-inositol, N-acetylaspartate, and choline compounds. Leave-one-out cross-validation showed that PLS-DA was efficient in group characterization. The metabolic patterns detected can be explained on the basis of previous multimodal studies of tumor metabolism and are consistent with neoplastic cell abnormalities possibly related to high turnover, resistance to apoptosis, osmotic stress and tumor tendency to use alternative energetic pathways such as glycolysis and ketogenesis.
Resumo:
Some aspects of the application of electrochemical impedance spectroscopy to studies of solid electrode / solution interface, in the absence of faradaic processes, are analysed. In order to perform this analysis, gold electrodes with (111) and (210) crystallographic orientations in an aqueous solution containing 10 mmol dm-3 KF, as supporting electrolyte, and a pyridine concentration varying from 0.01 to 4.6 mmol dm-3, were used. The experimental data was analysed by using EQUIVCRT software, which utilises non-linear least squares routines, attributing to the solid electrode / solution interface behaviour described by an equivalent circuit with a resistance in series with a constant phase element. The results of this fitting procedure were analysed by the dependence on the electrode potential on two parameters: the pre-exponential factor, Y0, and the exponent n f, related with the phase angle shift. By this analysis it was possible to observe that the pyridine adsorption is strongly affected by the crystallographic orientation of the electrode surface and that the extent of deviation from ideal capacitive behaviour is mainly of interfacial origin.
Resumo:
Genetic algorithm was used for variable selection in simultaneous determination of mixtures of glucose, maltose and fructose by mid infrared spectroscopy. Different models, using partial least squares (PLS) and multiple linear regression (MLR) with and without data pre-processing, were used. Based on the results obtained, it was verified that a simpler model (multiple linear regression with variable selection by genetic algorithm) produces results comparable to more complex methods (partial least squares). The relative errors obtained for the best model was around 3% for the sugar determination, which is acceptable for this kind of determination.
Resumo:
Two spectrophotometric methods are described for the simultaneous determination of ezetimibe (EZE) and simvastatin (SIM) in pharmaceutical preparations. The obtained data was evaluated by using two different chemometric techniques, Principal Component Regression (PCR) and Partial Least-Squares (PLS-1). In these techniques, the concentration data matrix was prepared by using the mixtures containing these drugs in methanol. The absorbance data matrix corresponding to the concentration data matrix was obtained by the measurements of absorbances in the range of 240 - 300 nm in the intervals with Δλ = 1 nm at 61 wavelengths in their zero order spectra, then, calibration or regression was obtained by using the absorbance data matrix and concentration data matrix for the prediction of the unknown concentrations of EZE and SIM in their mixture. The procedure did not require any separation step. The linear range was found to be 5 - 20 µg mL-1 for EZE and SIM in both methods. The accuracy and precision of the methods were assessed. These methods were successfully applied to a pharmaceutical preparation, tablet; and the results were compared with each other.
Resumo:
Genetic algorithm and multiple linear regression (GA-MLR), partial least square (GA-PLS), kernel PLS (GA-KPLS) and Levenberg-Marquardt artificial neural network (L-M ANN) techniques were used to investigate the correlation between retention index (RI) and descriptors for 116 diverse compounds in essential oils of six Stachys species. The correlation coefficient LGO-CV (Q²) between experimental and predicted RI for test set by GA-MLR, GA-PLS, GA-KPLS and L-M ANN was 0.886, 0.912, 0.937 and 0.964, respectively. This is the first research on the QSRR of the essential oil compounds against the RI using the GA-KPLS and L-M ANN.
Resumo:
Este trabalho procura analisar as inter-relações entre a inovatividade, o envolvimento, a atitude dentro do modelo Theory of Planned Behavior (TPB) decomposto desenvolvido na psicologia social, e a experiência com a Internet com o processo de adoção da compra pela internet. Foi elaborado um modelo integrativo que possibilitasse explicar a relação entre esses fatores e a compra pela internet, e foi desenvolvida uma pesquisa de campo considerando uma amostra não probabilística de estudantes. Foi utilizado o método multivariado de modelagem de equações estruturais, aplicado por meio da técnica Partial Least Squares (PLS) para a verificação, explicação e comparação das relações entre os construtos. Os resultados mostram que a intenção da compra pela internet é diretamente influenciada pela atitude e pela inovatividade, e a atitude é influenciada pelo envolvimento. Não foi encontrada relação entre a experiência com a internet e a compra pela internet.
Resumo:
OBJECTIVE To evaluate the cross-cultural validity of the Demand-Control Questionnaire, comparing the original Swedish questionnaire with the Brazilian version. METHODS We compared data from 362 Swedish and 399 Brazilian health workers. Confirmatory and exploratory factor analyses were performed to test structural validity, using the robust weighted least squares mean and variance-adjusted (WLSMV) estimator. Construct validity, using hypotheses testing, was evaluated through the inspection of the mean score distribution of the scale dimensions according to sociodemographic and social support at work variables. RESULTS The confirmatory and exploratory factor analyses supported the instrument in three dimensions (for Swedish and Brazilians): psychological demands, skill discretion and decision authority. The best-fit model was achieved by including an error correlation between work fast and work intensely (psychological demands) and removing the item repetitive work (skill discretion). Hypotheses testing showed that workers with university degree had higher scores on skill discretion and decision authority and those with high levels of Social Support at Work had lower scores on psychological demands and higher scores on decision authority. CONCLUSIONS The results supported the equivalent dimensional structures across the two culturally different work contexts. Skill discretion and decision authority formed two distinct dimensions and the item repetitive work should be removed.
Resumo:
ABSTRACT The spatial distribution of forest biomass in the Amazon is heterogeneous with a temporal and spatial variation, especially in relation to the different vegetation types of this biome. Biomass estimated in this region varies significantly depending on the applied approach and the data set used for modeling it. In this context, this study aimed to evaluate three different geostatistical techniques to estimate the spatial distribution of aboveground biomass (AGB). The selected techniques were: 1) ordinary least-squares regression (OLS), 2) geographically weighted regression (GWR) and, 3) geographically weighted regression - kriging (GWR-K). These techniques were applied to the same field dataset, using the same environmental variables derived from cartographic information and high-resolution remote sensing data (RapidEye). This study was developed in the Amazon rainforest from Sucumbíos - Ecuador. The results of this study showed that the GWR-K, a hybrid technique, provided statistically satisfactory estimates with the lowest prediction error compared to the other two techniques. Furthermore, we observed that 75% of the AGB was explained by the combination of remote sensing data and environmental variables, where the forest types are the most important variable for estimating AGB. It should be noted that while the use of high-resolution images significantly improves the estimation of the spatial distribution of AGB, the processing of this information requires high computational demand.
Resumo:
The author proves that equation, Σy n ΣZx | ΣxyZx ΣxZx ΣxZ2x | = 0, Σy ΣZx Σy2x | where Z = 10-cq and q is a numerical constant, used by Pimentel Gomes and Malavolta in several articles for the interpolation of Mitscherlih's equation y = A [ 1 - 10 - c (x + b) ] by the least squares method, always has a zero of order three for Z = 1. Therefore, equation A Zm + A1Zm -1 + ........... + Am = 0 obtained from that determinant can be divided by (Z-1)³. This property provides a good test for the correctness of the computations and facilitates the solution of the equation.
Resumo:
The photometric determination of ascorbic acid with the "E. E. L. portable colorimeter" can be carried" out rapid and conveniently using either 3% HPO3 or 0,4% (COOH) 2 as protective agent. The standards would contain from 2 to 20 micrograms of ascorbic acid per ml of metaphosphoric or oxalic acid solutions. We mix 10 ml of these solutions with 3 ml of the adequate citrate buffer solutions, and we pipet 5 ml of the resulting mixture to a matched test tube containing 5 ml of sodium - 2,6 - dichlorobenzenoneindophenol (80 mg per liter); then we shake well and after 15 seconds the extintion is read using green filter. The readings are subtracted from the blank one. Designating the differences by x and the concentrations of ascorbic acid/ml in the standards by y, we get, with the acid of the method of least squares, the following regression equations: for the metaphosphoric acid Y = 0,543x + 0,629 for the oxalic acid Y = 0,516x + 0,422, which permit, by interpolating, the determination of the ascorbic acid content in plant materials.
Resumo:
Na pesquisa aqui relatada, visa-se investigar os antecedentes da intenção de uso de sistemas de home broker sob a ótica dos investidores do mercado acionário. Para atingir esse objetivo, por meio de referencial teórico baseado em teorias de aceitação de sistemas de informação, difusão da inovação, confiança em ambientes virtuais e satisfação do usuário, foi elaborado um modelo teórico e foram propostas hipóteses de pesquisa. Por meio de técnicas de equações estruturais baseadas em Partial Least Squares (PLS), a partir de 152 questionários válidos, coletados via web survey junto a investidores do mercado acionário brasileiro, foram testados o modelo proposto e as hipóteses de pesquisa. Identificaram-se, assim, os fatores compatibilidade, utilidade percebida e facilidade de uso percebida como antecedentes estatisticamente significantes do fator satisfação do usuário com o sistema de home broker, o qual, por sua vez, teve efeito estatisticamente significante na intenção de uso do sistema. São apresentadas, ainda, as implicações acadêmicas e gerenciais do trabalho, assim como suas limitações e uma agenda de pesquisa para essa importante área do conhecimento.
Resumo:
A aplicação de técnicas espectroscópicas que utilizam a radiação infravermelha (NIRS-Near Infrared Spectroscopy e DRIFTS-Diffuse Reflectance Fourier Transformed Spectroscopy) na análise inorgânica do solo tem sido proposta desde a década de 1970, mas até os dias atuais são raros os métodos implementados rotineiramente no Brasil. Isso deve-se à dificuldade em construir modelos de calibração, por meio de métodos estatísticos multivariados, utilizando-se amostras reais de solo, de constituição complexa, que varia geograficamente e de acordo com o manejo. Por isso, os objetivos deste trabalho foram construir modelos de calibração em NIRS e DRIFTS para a quantificação das frações de argila e areia, em amostras de solos de classes diferentes - Latossolo Vermelho (predominante), Nitossolo, Argissolo Vermelho e Neossolo Quartzarênico - e avaliar qual dessas duas técnicas é mais adequada para essa finalidade, assim como a interferência do agrupamento de amostras e da seleção de variáveis espectrais na qualidade desses modelos. Para isso, valores de referência obtidos pelo método do densímetro, método largamente utilizado nos laboratórios de análise de solo, foram correlacionados com valores de absorbância em NIRS e DRIFTS pela ferramenta estatística PLS (Partial Least Squares), obtendo-se altos coeficientes de determinação (R²), de 0,95, 0,90 e 0,91 para argila, silte e areia, respectivamente, na validação externa. Isso confirma a aplicabilidade das técnicas espectroscópicas na análise granulométrica do solo para fins agrícolas. O agrupamento das amostras segundo a localização e a seleção de variáveis espectrais pouco influenciou na qualidade dos modelos. A técnica espectroscópica mais indicada para essa finalidade foi a DRIFTS.