9 resultados para Helmholtz Equation
em Scielo Saúde Pública - SP
Resumo:
Background: The equations predicting maximal oxygen uptake (VO2max or peak) presently in use in cardiopulmonary exercise testing (CPET) softwares in Brazil have not been adequately validated. These equations are very important for the diagnostic capacity of this method. Objective: Build and validate a Brazilian Equation (BE) for prediction of VO2peak in comparison to the equation cited by Jones (JE) and the Wasserman algorithm (WA). Methods: Treadmill evaluation was performed on 3119 individuals with CPET (breath by breath). The construction group (CG) of the equation consisted of 2495 healthy participants. The other 624 individuals were allocated to the external validation group (EVG). At the BE (derived from a multivariate regression model), age, gender, body mass index (BMI) and physical activity level were considered. The same equation was also tested in the EVG. Dispersion graphs and Bland-Altman analyses were built. Results: In the CG, the mean age was 42.6 years, 51.5% were male, the average BMI was 27.2, and the physical activity distribution level was: 51.3% sedentary, 44.4% active and 4.3% athletes. An optimal correlation between the BE and the CPET measured VO2peak was observed (0.807). On the other hand, difference came up between the average VO2peak expected by the JE and WA and the CPET measured VO2peak, as well as the one gotten from the BE (p = 0.001). Conclusion: BE presents VO2peak values close to those directly measured by CPET, while Jones and Wasserman differ significantly from the real VO2peak.
Resumo:
Saponins are natural soaplike foam-forming compounds widely used in foods, cosmetic and pharmaceutical preparations. In this work foamability and foam lifetime of foams obtained from Ilex paraguariensis unripe fruits were analyzed. Polysorbate 80 and sodium dodecyl sulfate were used as reference surfactants. Aiming a better data understanding a linearized 4-parameters Weibull function was proposed. The mate hydroethanolic extract (ME) and a mate saponin enriched fraction (MSF) afforded foamability and foam lifetime comparable to the synthetic surfactants. The linearization of the Weibull equation allowed the statistical comparison of foam decay curves, improving former mathematical approaches.
Resumo:
The formalism of supersymmetric Quantum Mechanics can be extended to arbitrary dimensions. We introduce this formalism and explore its utility to solve the Schrödinger equation for a bidimensinal potential. This potential can be applied in several systems in physical and chemistry context , for instance, it can be used to study benzene molecule.
Resumo:
In this work, a new mathematical equation correction approach for overcoming spectral and transport interferences was proposed. The proposal was applied to eliminate spectral interference caused by PO molecules at the 217.0005 nm Pb line, and the transport interference caused by variations in phosphoric acid concentrations. Correction may be necessary at 217.0005 nm to account for the contribution of PO, since Atotal217.0005 nm = A Pb217.0005 nm + A PO217.0005 nm. This may be easily done by measuring other PO wavelengths (e.g. 217.0458 nm) and calculating the relative contribution of PO absorbance (A PO) to the total absorbance (Atotal) at 217.0005 nm: A Pb217.0005 nm = Atotal217.0005 nm - A PO217.0005 nm = Atotal217.0005 nm - k (A PO217.0458 nm). The correction factor k is calculated from slopes of calibration curves built up for phosphorous (P) standard solutions measured at 217.0005 and 217.0458 nm, i.e. k = (slope217.0005 nm/slope217.0458 nm). For wavelength integrated absorbance of 3 pixels, sample aspiration rate of 5.0 ml min-1, analytical curves in the 0.1 - 1.0 mg L-1 Pb range with linearity better than 0.9990 were consistently obtained. Calibration curves for P at 217.0005 and 217.0458 nm with linearity better than 0.998 were obtained. Relative standard deviations (RSD) of measurements (n = 12) in the range of 1.4 - 4.3% and 2.0 - 6.0% without and with mathematical equation correction approach were obtained respectively. The limit of detection calculated to analytical line at 217.0005 nm was 10 µg L-1 Pb. Recoveries for Pb spikes were in the 97.5 - 100% and 105 - 230% intervals with and without mathematical equation correction approach, respectively.
Resumo:
The arbitrary angular momentum solutions of the Schrödinger equation for a diatomic molecule with the general exponential screened coulomb potential of the form V(r) = (- a / r){1+ (1+ b )e-2b } has been presented. The energy eigenvalues and the corresponding eigenfunctions are calculated analytically by the use of Nikiforov-Uvarov (NU) method which is related to the solutions in terms of Jacobi polynomials. The bounded state eigenvalues are calculated numerically for the 1s state of N2 CO and NO
Resumo:
The state of Ceará, Brazil, has 75% of its area covered by Brazilian semiarid, with its peculiar features. In this state, the dams are constituted in water structure of strategic importance, ensuring, both in time and space, the development and supply of water to population. However, construction of reservoirs results in various impacts that should be carefully observed when deciding on their implementation. One of the impacts identified as negative is the increased evaporation, which constitutes a major component of water balance in reservoirs, especially in arid regions. Several methods for estimating evaporation have been proposed over time, many of them deriving from the Penman equation. This study evaluated six different methods for estimating evaporation in order to determine the most suitable for use in hydrological models for water balance in reservoirs in the state of Ceará. The tested methods were proposed by Penman, Kohler-Nordenson-Fox, Priestley-Taylor, deBruim-Keijman, Brutsaert-Stricker and deBruim. The methods presented good performance when tested for water balance during the dry season, and the Priestley-Taylor was the most appropriate, since the data from de simulated water balance with evaporation estimated by this method were the closest of the water balance data observed from measures of reservoir level and the elevation-volume curve provided by the Company of Management of Water Resources of the state of Ceará - COGERH.
Resumo:
The aim of this study was to generate maps of intense rainfall equation parameters using interpolated maximum intense rainfall data. The study area comprised Espírito Santo State, Brazil. A total of 59 intense rainfall equations were used to interpolate maximum intense rainfall, with a 1 x 1 km spatial resolution. Maximum intense rainfall was interpolated considering recurrence of 2; 5; 10; 20; 50 and 100 years, and duration of 10; 20; 30; 40; 50; 60; 120; 240; 360; 420; 660; 720; 900; 1,140; 1,380 and 1,440 minutes, resulting in 96 maps of maximum intense rainfall. The used interpolators were inverse distance weighting and ordinary kriging, for which significance level (p-value) and coefficient of determination (R²) were evaluated for the cross-validation data, choosing the method that presented better R² to generate maps. Finally, maps of maximum intense precipitation were used to estimate, cell by cell, the intense rainfall equation parameters. In comparison with literature data, the mean percentage error of estimated intense rainfall equations was 13.8%. Maps of spatialized parameters, obtained in this study, are of simple use; once they are georeferenced, they may be imported into any geographic information system to be used for a specific area of interest.
Resumo:
Due to the lack of information concerning maximum rainfall equations for most locations in Mato Grosso do Sul State, the alternative for carrying out hydraulic work projects has been information from meteorological stations closest to the location in which the project is carried out. Alternative methods, such as 24 hours rain disaggregation method from rainfall data due to greater availability of stations and longer observations can work. Based on this approach, the objective of this study was to estimate maximum rainfall equations for Mato Grosso do Sul State by adjusting the 24 hours rain disaggregation method, depending on data obtained from rain gauge stations from Dourado and Campo Grande. For this purpose, data consisting of 105 rainfall stations were used, which are available in the ANA (Water Resources Management National Agency) database. Based on the results we concluded: the intense rainfall equations obtained by pluviogram analysis showed determination coefficient above 99%; and the performance of 24 hours rain disaggregation method was classified as excellent, based on relative average error WILMOTT concordance index (1982).
Resumo:
This study aimed to analyze the agreement between measurements of unloaded oxygen uptake and peak oxygen uptake based on equations proposed by Wasserman and on real measurements directly obtained with the ergospirometry system. We performed an incremental cardiopulmonary exercise test (CPET), which was applied to two groups of sedentary male subjects: one apparently healthy group (HG, n=12) and the other had stable coronary artery disease (n=16). The mean age in the HG was 47±4 years and that in the coronary artery disease group (CG) was 57±8 years. Both groups performed CPET on a cycle ergometer with a ramp-type protocol at an intensity that was calculated according to the Wasserman equation. In the HG, there was no significant difference between measurements predicted by the formula and real measurements obtained in CPET in the unloaded condition. However, at peak effort, a significant difference was observed between oxygen uptake (V˙O2)peak(predicted)and V˙O2peak(real)(nonparametric Wilcoxon test). In the CG, there was a significant difference of 116.26 mL/min between the predicted values by the formula and the real values obtained in the unloaded condition. A significant difference in peak effort was found, where V˙O2peak(real)was 40% lower than V˙O2peak(predicted)(nonparametric Wilcoxon test). There was no agreement between the real and predicted measurements as analyzed by Lin’s coefficient or the Bland and Altman model. The Wasserman formula does not appear to be appropriate for prediction of functional capacity of volunteers. Therefore, this formula cannot precisely predict the increase in power in incremental CPET on a cycle ergometer.