10 resultados para Helium Hamiltonian
em Scielo Saúde Pública - SP
Resumo:
Potential parameters sensitivity analysis for helium unlike molecules, HeNe, HeAr, HeKr and HeXe is the subject of this work. Number of bound states these rare gas dimers can support, for different angular momentum, will be presented and discussed. The variable phase method, together with the Levinson's theorem, is used to explore the quantum scattering process at very low collision energy using the Tang and Toennies potential. These diatomic dimers can support a bound state even for relative angular momentum equal to five, as in HeXe. Vibrational excited states, with zero angular momentum, are also possible for HeKr and HeXe. Results from sensitive analysis will give acceptable order of magnitude on potentials parameters.
Resumo:
The objective of this work was to develop a genetic transformation system for tropical maize genotypes via particle bombardment of immature zygotic embryos. Particle bombardment was carried out using a genetic construct with bar and uidA genes under control of CaMV35S promoter. The best conditions to transform maize tropical inbred lines L3 and L1345 were obtained when immature embryos were cultivated, prior to the bombardment, in higher osmolarity during 4 hours and bombarded at an acceleration helium gas pressure of 1,100 psi, two shots per plate, and a microcarrier flying distance of 6.6 cm. Transformation frequencies obtained using these conditions ranged from 0.9 to 2.31%. Integration of foreign genes into the genome of maize plants was confirmed by Southern blot analysis as well as bar and uidA gene expressions. The maize genetic transformation protocol developed in this work will possibly improve the efficiency to produce new transgenic tropical maize lines expressing desirable agronomic characteristics.
Resumo:
The preparation of gamma-LiAlO2 by coprecipitation and sol-gel synthesis was investigated. Ceramic powders obtained by coprecipitation synthesis were prepared from aqueous solutions of aluminum and lithium nitrates using sodium hydroxide as precipitant agent. By sol-gel synthesis, the ceramic powders were prepared from hydrolysis of aluminum isopropoxide. The materials obtained by two routes of synthesis were dried at 80ºC and calcined at 550, 750, 950 and 1150ºC. The characterization was done by X-ray diffraction, infrared spectroscopy, emission and absorption atomic spectrometry, helium picnometry, specific surface area (BET method) and scanning electronic microscopy. Mixtures of crystalline phases were obtained by coprecipitation synthesis: 80ºC- LiAl2(OH)7.2H2O + Al(OH)3; 550 and 750ºC- alpha-LiAlO2 + eta-Al2O3; 950 and 1150ºC- gamma-LiAlO2 + LiAl5O8. Chemical analysis showed molar ration Al/Li @ 3. Crystalline single-phases were obtained by sol-gel synthesis above 550ºC: 550ºC-alpha-LiAlO2; 750, 950 and 1150ºC-gamma-LiAlO2. These powders presented molar ration Al/Li @ 1. Thus, gamma-LiAlO2 crystalline phase was obtained at 750ºC by sol-gel synthesis while by coprecipitation synthesis, a mixture of crystalline phases was obtained. These results showed the superiority of the sol-gel synthesis for the preparation of pure gamma-LiAlO2.
Resumo:
Macroscopic samples of fullerene nanostructures are obtained in a modified arc furnace using the electric arc method with a Helium atmosphere at low pressures. High purity graphite rods are used as electrodes but, when drilled and the orifices filled with powders of transition metals (Fe, Co, Ni) acting as catalysts, the resulting particles are carbon nanostructures of the fullerene family, known as Single Wall Nanotubes (SWNTs). They have typical diameters of 1.4 nm, lengths up to tenths of microns and they are arranged together in bundles containing several SWNTs. Those samples are observed and analyzed using Scanning Electron Microscopy (SEM) and Transmission Electron Microscopy (TEM) techniques.
Resumo:
In this study, the influence of mechanical activation by intensive ball milling of a stoichiometric mixture of talc, kaolin, and alumina on the mechanism and kinetics of cordierite (2MgO·2Al2O3·5SiO2) formation was evaluated. The raw materials were characterized by chemical analysis, X-ray diffraction (XRD), laser diffraction, and helium pycnometry. The kinetics and mechanism of cordierite formation were studied by XRD, differential thermal analysis, and dilatometry in order to describe the phase formation as a function of temperature (1000-1400 ºC), time of thermochemical treatment (0-4 h), and grinding time of the mixture (0-45 min). Finally, the optimal conditions of the thermochemical treatment that ensured the formation of cordierite were determined: milling time of 45 min and thermal treatment at 1280 ºC for 1 h.
Resumo:
The aim of this study was to use digital images acquired by cameras attached to a helium balloon to detect variation of the nutritional status in Brachiaria decumbens. The treatments consisted of five doses of nitrogen (0, 50, 100, 150 e 200kg ha-1) with six replications each, evaluated in a completely randomized statistical design. A remote sensing system composed of digital cameras and microcomputers was used for image acquisition, and a helium balloon lifted the cameras to the heights of 15, 20, 25 and 30m. A portable chlorophyll meter and analyses of leaf nitrogen content were used to make comparisons with data obtained by the remote sensing system. Data was acquired in two phases, in different climatic conditions. At the end of each phase, dry matter production was measured. Three vegetation indices were used to evaluate the detection of different nutritional status. The three indices were able to detect the effects of N doses. The indices constructed with the Green spectral band showed to be more efficient.
Resumo:
The aim of this work is to study the conservation laws of continuous means mechanics and also to extend the Hamiltonian method for these kind of systems in order to valid for non-potential operators through variational approach. Besides illustrating with various examples of mechanical applications we also introduce in this work the new technique in order to treat such problems as the non-potential problem.
Resumo:
Some properties of generalized canonical systems - special dynamical systems described by a Hamiltonian function linear in the adjoint variables - are applied in determining the solution of the two-dimensional coast-arc problem in an inverse-square gravity field. A complete closed-form solution for Lagrangian multipliers - adjoint variables - is obtained by means of such properties for elliptic, circular, parabolic and hyperbolic motions. Classic orbital elements are taken as constants of integration of this solution in the case of elliptic, parabolic and hyperbolic motions. For circular motion, a set of nonsingular orbital elements is introduced as constants of integration in order to eliminate the singularity of the solution.
Resumo:
Chicken embryos kept in culture medium were bombarded using a high helium gas pressure biolistic device. To optimize the factors that affect transformation efficiency, the lacZ gene under control of the human cytomegalovirus immediate early enhancer/promoter was used as a reporter gene. There was an inverse relationship between survival rate and transformation efficiency. The best conditions obtained for high embryo survival and high transformation efficiency were achieved with 800 psi helium gas pressure, 500 mmHg vacuum, gold particles, an 8 cm DNA-coated microparticle flying distance to the embryo and embryo placement 0.5 cm from the center of the particle dispersion cone. Under these conditions, transformation efficiency was 100%, survival rate 25% and the number of expression units in the embryo body cells ranged from 100 to 1,000. Expression of green fluorescent protein was also detected in embryos bombarded under optimal conditions. Based on the results obtained, the biolistic process can be considered an efficient method for the transformation of chicken embryos and therefore can be used as a model system to study transient gene expression and tissue-specific promoters.
Resumo:
We determined the effects of helium-neon (He-Ne) laser irradiation on wound healing dynamics in mice treated with steroidal and non-steroidal anti-inflammatory agents. Male albino mice, 28-32 g, were randomized into 6 groups of 6 animals each: control (C), He-Ne laser (L), dexamethasone (D), D + L, celecoxib (X), and X + L. D and X were injected im at doses of 5 and 22 mg/kg, respectively, 24 h before the experiment. A 1-cm long surgical wound was made with a scalpel on the abdomens of the mice. Animals from groups L, D + L and X + L were exposed to 4 J (cm²)-1 day-1 of He-Ne laser for 12 s and were sacrificed on days 1, 2, or 3 after the procedure, when skin samples were taken for histological examination. A significant increase of collagen synthesis was observed in group L compared with C (168 ± 20 vs 63 ± 8 mm²). The basal cellularity values on day 1 were: C = 763 ± 47, L = 1116 ± 85, D = 376 ± 24, D + L = 698 ± 31, X = 453 ± 29, X + L = 639 ± 32 U/mm². These data show that application of L increases while D and X decrease the inflammatory cellularity compared with C. They also show that L restores the diminished cellularity induced by the anti-inflammatory drugs. We suggest that He-Ne laser promotes collagen formation and restores the baseline cellularity after pharmacological inhibition, indicating new perspectives for laser therapy aiming to increase the healing process when anti-inflammatory drugs are used.