216 resultados para Haag-Kastler Axioms.
em Scielo Saúde Pública - SP
Resumo:
OBJETIVO: Realizar a tradução, adaptação e validação de conteúdo da versão brasileira do Posttraumatic Cognitions Inventory . MÉTODOS: O processo de tradução e adaptação das instruções iniciais e dos itens do PTCI envolveu cinco etapas: (1) tradução; (2) retradução; (3) correção e adaptação semântica; (4) validação do conteúdo por profissionais da área (juízes); e (5) teste da versão final, por meio de uma escala verbal-numérica. Como indicadores de desempenho para a compreensão, foram computados os escores de tendência central (média) e dispersão (desvio padrão) para cada item na etapa 5. Definiu-se escore médio ≥ 3 para compreensão satisfatória. RESULTADOS: As 36 questões e as instruções iniciais foram traduzidas e adaptadas para compor a versão brasileira do Posttraumatic Cognitions Inventory . Quarenta e cinco adultos responderam aos itens do Posttraumatic Cognitions Inventory na etapa teste da versão final, mostrando compreensão adequada do instrumento na escala verbal-numérica (M = 4,13; dp = 0,11). CONCLUSÕES: O Posttraumatic Cognitions Inventory é um instrumento de fácil compreensão e semanticamente válido. Estudos posteriores são necessários para a verificação e adequação da avaliação de suas propriedades psicométricas na população brasileira.
Resumo:
OBJETIVO: O objetivo do presente estudo foi verificar evidências de fidedignidade do instrumento neuropsicológico Iowa Gambling Task (IGT) a partir do método teste-reteste. MÉTODO: Participaram 50 indivíduos saudáveis, de 19 a 75 anos de idade, com no mínimo cinco anos de educação formal. A aplicação foi realizada de forma individual, em dois encontros, com intervalo de um a seis meses entre teste e reteste. RESULTADOS: Os resultados evidenciaram uma correlação positiva moderada significativa entre teste-reteste no cálculo global. Na análise por segmentos, os blocos 4 e 5 apresentaram uma correlação positiva moderada, mas não foram observadas correlações significativas nos blocos 1, 2 e 3. CONCLUSÃO: Esses dados corroboram estudos atuais que encontraram correlações moderadas entre teste-reteste em medidas de funções executivas e sugerem que o IGT pode ser empregado para avaliar o processo de tomada de decisão de forma confiável ao longo do tempo, desde que sejam considerados estudos de fidedignidade com populações saudáveis mais amplas e com populações clínicas.
Resumo:
Two water-culture experiments were carried out to study the absorption and the translocation of radiozinc in young coffee plants as influenced by two factors, namely, concentration of heavy metals (iron, manganese, copper and molybdenum) and method of application. Inert zinc was furnished at a uniform rate of 0.05 p.p.m.; the levels of iron supply were 0, 1.0 and 10 p.p.m.; manganese was supplied in three doses 0, 0.5, and 5 p.p.m.; copper - 0, 0.02, and 0.2 p.p.m.; molybdenum - 0, 0.01 and 0.1 p.p.m. When applied to the nutrient solution the activity of the radiozinc was 0.15 microcuries per plant. In the study of the leaf absorption, the radiozinc was supplied at the level of 0.10 microcuries per plant; in this case the material was brushed either on the lower or in the upper surface or both of two pairs of mature leaves. In both experiments the absorption period was 8 weeks. The following conclusions can be drawn: 1. Among the heavy metals herein investigated the iron concentration did not affecc the uptake of the radiozinc; by raising the level of Mn, Cu and Mo ten times, the absorption dropped to 50 per cent and even more whe compared with the control plant; however, when these micronutrients were omitted from the nutrient solution an increase in the uptake of zinc was registered only in the minus - Cu treatment. The effects of high leveds of Mn, Cu and Mo probably indicate an interionic competition for a same site on a common binding substance in the cell surface. 2. The absorption of the radiozinc directly applied to the leaf surface reached levels as high as 8 times that registered when the root uptake took place. Among the three methods of application which have been tried, brushing the lower surface of the leaves proved to be the most effective; this result is easily understood since the stomatal openings of the coffee leaves are preferentially located in the lower surface. In this treatment, about 40 per cent of the activity was absorbed and around 12 per cent were translocated either to the old or to the newer organs. 3. Data herein presented suggest that leaf sprays should be preferred - rather than soil applications - to control zinc deficiency in coffee plants when growing in field conditions.
Resumo:
The determination of total nitrogen, phosphorus, and potassium in plant material can be carried out in a common extract prepared with sulphuric acid and 30 per cent hydrogen peroxide. Nitrogen is estimated by direct nesslerization of a suitable aliquot (1-5 ml of the 50 ml extract made out of 250 mg of dried material); in order to avoid excessive acidity, 10 ml of Nessler's reagent should be employed. An aliquot of 1-5 ml suffices for the colorimetric determination of phosphorus by the molybdenum method; to reduce the phosphomolybdate complex 2 ml of a 2% SnC12 soln are necessary. Potassium is determined by the cobaltinitrite method after elimination of ammonium salts with the aid of aqua-regia.
Resumo:
The rate of nitrification of several nitrogenous fertilizers (ammonium sulfate, nitre-chalk, ureia, and cottonseed meal) was studied in three soils, namely, "terra roxa legítima", a red soil derived from basalt, "terra roxa misturada", a soil also derived from basalt but with a higher proportion of sand, and "areito Corumbataí", a sandy soil. The effects of the following treatments on nitrification were considered: addition of limestone of micronutrients (Fe, Cu, Zn, Mn, and Mo), and inoculation with a suspension of spores of Aspergillus wentii, a heterotrophic nitrifier. The results showed that: in "terra roxa legítima" limestone had no influence on the nitrification rate, whereas the micronutrients estimulated the oxidation of nitre-chalk, cottonseed meal and urea; inoculation with A. wentii helped only the nitrification of ammonium sulfate and of the cottonseed meal; the latter, in all the treatments employed gave use to a smaller amount of nitrates; in "terra roxa misturada", all the fertilizers depending upon the treatments they were subjected to, presented maximum values for nitrification; limestone estimulated the oxidation of ammonium sulfate as well as the mineralization of the cottonseed meal; the addition of micronutrients helped the nitrification of all the fertilizers, except that of urea; inoculation showed a benefical influence on the nitrification of ammonium sulfate and cottonseed meal; in "arenito de Corumbatai", the amounts of nitrates produced was roughly the same for all the fertilizers investigated; limestone estimulated the nitrification of nitro-chalk, ammonium sulfate and cottonseed meal whilst the addition of micronutrients benefited only the latter two; the inoculation with A. wentii helped the oxidation of all the fertilizers. In order to study the availability of the various fertilizers above discussed, two plant growing experiments were carried cut, one in pots, using the three soil types and another one in the field, with "terra roxa misturada". In "arenito de Corumbatai" there was no significant difference in the yield both of straw and rice grains for none of the fertilizers: Chilean nitrate of soda was used as a control; ho marked agreement could be detected between the data concerning nitrification and the yield results. In "terra roxa legítima", ammonium sulfate won the competition and there was a good parallelism between nitrification and yield. In "terra roxa misturada", there was no statistical difference among the various fertilizers; the agreement between nitrification and yields was reasonable. In the field (corn), Chilean nitrate, ammonium sulfate and nitro-chalk were clearly beter than urea and cottonseed meal which did not differ from the minus nitrogen plots.
Resumo:
The present work was carried out in order to study: (1) the symptoms of deficiency and excess of macronutrients (N, P, K, Ca, S, Mg) in the coffee plant (Coffea arabica L. var. Mundo novo); (2) the modifications induced by those treatments in the hystological make up of the leaves; (3) the effects of deficiency and excess on the growth and in the chemical composition of the plants. Young coffee plants were grown in nutrient solution, three treatments being used, namely: complete solution (HOAGLAND & ARNON, 1950), deficient solution, in which a giVen element was omitted, and solution with 3 times the concentration of the element under study. The main conclusions can be summaryzed as follows. 1. SYMPTOMS. Clear cut symptoms of malnutrition were observed in the treatments: -N, -P, +P, -Ca, -Mg, -S and +S; the signals - and + stared respectively for deficient and excess level. 2. HISTOLOGICAL EFFECTS. The most definite alterations took place in the treatments +P, -Mg and +S. Usually the characteristics of the chloroplasts were affected: loss of the green color and coalescence into irregular bodies.
Resumo:
Due to the great importance of coffee to the Brazilian economy, a good deal of the work carried out in the "Laboratório de Isótopos", E. E. A. "Luiz de Queiroz", Piracicaba, S. Paulo, Brazil, was dedicated to the study of some problems involving that plant. The first one was designed to verify a few aspects of the control of zinc deficiency which is common in many types of soils in Brazil. An experiment conducted in nutrient solution showed that the leaf absorption of the radiozinc was eight times as high as the root uptake; the lower surface of the leaves is particularly suited for this kind of absorption. Among the heavy metal micronutrients, only iron did not affect the absorption of the radiozinc; manganese, copper, and molybdenum brought about a decrease of fifty per cent in total uptake. In another pot experiment in which two soils typical of the coffee growing regions were used, namely, a sandy soil called "arenito de Bauru" and a heavy one, "terra roxa", only O.l and 0.2 per cent of the activity supplied to the roots was recovered", respectively. This indicates that under field conditions the farmer should not attempt to correct zinc deficiency by applying zinc salts to the soil: leaf sprays should be used wherever necessary. In order to find out the most suitable way to supply phosphatic fertilizers to the coffee plant, under normal farm conditions, an experiment with tagged superphosphate was carried out with the following methods of distribution of this material: (1) topdressed in a circular area around the trees; (2) placed in the bottom of a 15 cm deep furrow made around the plant; (3) placed in a semicircular furrow, as in the previous treatment; (4) sprayed directly to the leaves. It was verified that in the first case, circa 10 per cent of the phosphorus in the leaves came from the superphosphate; for the other treatments, the results ware, respectively: 2.4, 1.7, and 38.0 per cent. It is interesting to mention that the first and the last methods of distribution were those less used by the farmers; now they are being introduced in many coffee plantations. In a previous trial it was demonstrated that urea sprays were an adequate way to correct nitrogen deficiency under field conditions. An experiment was then set up in which urea-C14 was used to study the metabolism of this fertilizer in coffee leaves. In was verified that in a 9 hours period circa 95 per cent of the urea supplied to the leaves had been absorbed. The distribution of the nitrogen of the urea was followed by standard chemical procedures. On the other hand the fate of the carbonic moiety was studied with the aid of the radiochromatographic technique. Thus, the incorporation of C14 in aminoacids, sugars and organic acids was ascertained. Data obtained in this work gave a definite support to the idea that in coffee leaves, as in a few other higher plants, a mechanism similar to the urea cycle of animals does exist.
Resumo:
This paper deal with one experiment carried out in order to study the correlation between petioles analysis and seed cotton yield. A 3X3X3 factorial with respect to N, P2 0(5) and K2 O was installed in a sandy soil with low potash content and medium amounts of total N and easily extractable P. Two kinds of petioles, newly mature were collected for analysis: those attached to fruit hearing branches, and petioles located on the stem; the first group is conventionally named "productive petioles"; The second one is called "not productive petioles". Petioles' sampling was done when the first blossoms appeared. Yield date showed a marked response to potash, both nitrogen and phosphorus having no effect. Very good correlation was found between petioles potash and yield. Both types of petioles samples were equally good indicators of the potash status of the plants. By mathematical treatment of the date it followes that the highed yield which was possible under experimental conditions, 1.562 kg of seed cotton per hectare would be reacher by using 128 kg of K2O per hectare. With this amount of potash supplied to the plants the following K levels would be expected in the petioles: "productive petioles" "not productive petioles" 1,93 % K 1,85 % K
Resumo:
The present work was carried out in order to study: (1) The symptoms of deficiency of macronutrients (N, P, K, Ca, Mg, S) in guava (Psidium guajava L.). (2) The modifications induced by those treatments in the histological make up of the leaves. Young guava plants were grown in nutrient solution two treatments being used, namely: complete solution (HOAGLAND and ARNON, 1950), deficient solution, in which a given element was ommitted. The main conclusions can be summaryzed as follows. a) Symptoms Clear cut symptoms of malnutrition were observed in the treatments: -N, -P, -Ca, -K, -Mg, and -S. The signal - stared respectively for deficient level. b) Histological effects Usually the characteristics of the chloroplasts were affected: loss of the green and coalescence into irregular bodies.
Resumo:
Young coffee plants (Coffea arabica L., var. Mundo Novo) were grown in nutrient solution purified from micronutrients contaminants by the method of MUNNS & JOHNSON (1960). All plants, except those in the control treatment, wer given all macronutrients and all micronutrients except one which was omitted in order to induce its shortage. Symptoms of deficiency were obtained for all known micronutrients but chlorine. Measurements, observations and chemical analysis of leaves allowed the following main conclusions to be drawn. 1. The relative influence of micronutrients in growth-measured by the fresh weight of the entire plant - was as follows: -Fe -Zn -Cu -Mo -Mn complete = -B = -CI. that is: the omission of iron from the nutrient solution caused the severest reduction in growth; lack of B and Cl had no effect. 2. Symptoms of deficiency of B, Fe, Mn, and Zn were found to be in good agreement with those in the literature. Effects of Cu and Mo shortage, however, had not been described so far: In the case of the Cu-deficient plants, the younger leaves were distorted, having an "S" shape, due probably to lack of growth of the veins; they lost their green color and developed rather large, necrotic patches near the margins. When molybdenum was omitted from the nutrient solution yellow spots develop near the margen of subterminal (fully mature) leaves; they became necrotic; there was a characteristic downward curling of the leaf blade along the mid rib so that the opposite edges touched each other underneath. 3. The levels of micronutrients found in normal and deficient leaves are given in Table 4. It is hoped that those values will serve as a basis of judgement of micronutrient contents found in leaves of field grown plants.
Resumo:
This paper deals with the mineral composition fresh and dry matter production of different organs of 4, 5 old guava (Psidium guajava L.) growth on sandy soil (Savanna) without fertilizer. The data obtained for fresh and dry matter productior are present in table 2 (in Portuguese). The concentration of the elements are presented in table 3 (in Portuguese). Finally, the total amounts of elements absorbed by guava are given in the following table: Element Plant (grams) Fruits (grams) Nitrogen (N) 42,55 20,4 Phosphorus (P) 3,84 2,3 Potassium (K) 52,01 31,3 Calcium (Ca) 47,81 0,2 Magnesium (Mg) 2,4
Resumo:
WATER-CULTURE EXPERIMENTS. Two water-culture experiments were carried out to study the absorption and the translocation of radiozinc in young coffee plants as influenced by two factors, namely, concentration of heavy metals (iron, man ganese, copper and molybdenum) and method of application. Inert zinc was supplied at an uniform rate of 0. 05 p. p. m.; the levels of iron supply were 0, 1.0, and 10.0 p. p.m.; manganese was supplied in three doses 0, 0.5, and 5.0 p. p.m.; copper- 0, 0. 02, and 0. 2 p. p. m.; molybdenum- 0, 0. 01, and 0. 1 p. p. m. When applied to the nutrient solution the activity os the radiozinc (as zinc chloride) was 0. 15 microcuries per plant. In the study of the leaf absorption, Zn65 was supplied at the level of 0. 10 microcuries per plant; in this case the radioative material was brushed either on the lower or on the upper surface or both two pairs of mature leaves. The absorption period was 8 weeks. The radioactivity assay showed the following results: 1 - Among the heavy metals herein investigated the iron concentration did not affect the uptake of the radiozinc; by raising the level of Mn, Cu and Mo ten times, the absorption dropped to 50 per cent and even more when compared with the control plants; when, however, these micronutrients were omitted from the nutrient solution, an increase in the uptake of zinc was registered in the minus Cu treatment only. The effects of high levels of Mn, Cu and Mo probably indicate an interionic competition for a same site on a common binding substance in the cell surface. 2 - The absorption of the radiozinc directly applied to the leaf surface reached levels as high as 8 times that registered when the root uptake took place. Among the three methods of application which have been tried, brushing the lower surface of the leaves proved to be the most effective; this result is easily understood since the stomatal openings of the coffee leaves an preferentially located in the lower surface - in this treatment, about 40 per cent of the activity was absorved and around 12 per cent were translocated either to the old or to the newer organs. Chemical analyses for heavy metals, were carried out only in the plants received Zn65Cl2 in the nutrient solution; the results were as follows; 1 - Control plants had, per 1,000 gm, of dry weight the following amounts in mg.: Zn- 48 in the roots and 29 in the tops; Fe- 165 in the roots and 9 in the tops; Mn- 58 in the roots and 15 in the tops, Cu- 15 in the roots and 1. 2 in the tops; Mo- 2. 8 in the roots and 0. 45 in the tops. 2 - The effect of different levels of micronutrients in the composition of the plants can be summarized as follows: Fe and Zn- when omitted from the nutrient solution, the iron and zinc contents in the roots decreased, no variation being noted in the tops; the higher dosis caused an accumulation in the roots but no apparent effect in the tops; Mn- by omitting this micronutrient a decrease in its content in the roots was noted, where as the concentration in the tops was the same; Mo- no variation in roots and tops contents when molybdenum was omitted; higher dosis of manganese and molybdenum increased the amounts formed both in the roots and in the tops. 3 - The influence of the different concentrations of micronutrients heavy metals on the zinc content of the coffee plants can be described by saying that: Fe and Mo- no marked variation; Mn- no effect when omitted, reduced amount when the high dosis was supplied; Mn- when the plants did not receive manganese the zinc content in roots and tops was the same as in the control plants; a decrease in the zinc content of the total plant occurred when the high dosis was employed; Cu -the situation is similar to that described for manganese. Hence, results showed by the chemical analyses roughly correspond to those of the radioactivity assay; the use of the tracer technique, however, gave best informations along this line. SOIL-POTS EXPERIMENTS. The two types of soils which when selected support the most extensive coffee plantations in the State of São Paulo, Brazil: "arenito de Bauru", a light sandy soil and "terra roxa legitima", a red soil derived from basalt. Besides NPK containing salts, the coffee plants were given two doses of inert zinc (65 and 130 mg ZnCl2 per pot) and radiozinc at a total activity of 10(6) counts/minute. The results of the countings can be summarized as follows: 1 - When plants were grown in "arenito de Bauru" the activity absorbed as per cent of the total activity supplied was not affected by the dosis of inert zinc. The highest value found was around 0. 1 per cent. 2 - For the "terra roxa" plants, the situation is almost the same; there was, however, a slight increase in the absorption of the radiozinc when 130 mgm of ZnClg2 was given: a little above 0. 2 per cent of the activity supplied was absorbed. The results clearly show that the young coffee plants practically did not absorb none of the zinc supplied; two reasons at least could be pointed out to explain such a fact: 1 - Zinc fixation by an exchange with magnesium or by filling holes in the octahedral layer of aluminosilicates, probably kaolinite; 2 - No need for fertilizer zinc in the particular stage of life cycle under which the experiment was set up. The data from chemical analysis are roughly parallel to the above mentioned. When one attempts to compare - by taking data herein reported zinc uptake from nutrient solution, leaf brushing or from fertilizers in the soil, a practical conclusion can be drawn: the control of zinc deficiency in coffee plants should not be done by adding the zinc salts to the soil; in other words: the soil applications used so extensively in other countries seem not to be suitable for our conditions; hence zinc sprays should be used wherever necessary.
Resumo:
Cotton (variety I. A. C. 11) was grown on a sandy soil under two treatments, namely: (1) NPK + lime and (2) no fertilizers. Three weeks after planting a systematic sampling of entire plants was done every other week. In the laboratory determinations of dry weight were made and afterwards the various plant partes were submitted to chemical analyses, nitrogen (N), phosphorus (P), potassium (K), calcium (Ca), magnesium (Mg), and sulfur (S) being determined. The aim of this work was to obtain information on the periods in which the absorption of the several macronutrients was more intense, this providing a clue for time of application of certain mineral fertilizers. Data obtained hereby allowed for the following main conclusions. The initial rate of growth of the cotton plant, judged by the determinations of dry weight, is rather slow. Seven weeks after planting and again five weeks two distinct periods of rapid growth take place. The uptake of macronutrients is rather small until the first flowers show up. From there on the absorption of minerals is intensified. From the time in which fruits are being formed to full maturity, the crop draws from the soil nearly 75 percent of the total amount of elements required to complet life cycle. This seams to point out the need for late dressings of fertilizers, particularly of those containing N and K. The following amounts of element in Kg/ha were absorbed by the fertilized plants: N - 83.2 P - 8.1 K - 65.5 Ca - 61.7 Mg - 12.8 and S - 33.2. The three major macronutrients, namely, N. P and K are exported as seed cotton in the following proportions with respect to the total amounts taken up by the entire crop: N - 1/3, P - 1/2 and K - 1/3.
Resumo:
Pineapple plants when grown in the greenhouse by the sand culture technique in order to study the effects of deficiencies of macronutrients in growth, yield, leaf and fruit composition, the main results were the following. As a result of the several treatments, yield decreased in the order: Complete Minus Mg Minus S Minus Ca Minus K; nitrogen and phosphorus deficiente plants did not bear fruit. Leaf analyses (see Table 5-1) showed that the ommission of given element from the nutrient solution always caused a decrease in its level in the green tissue. As seen in Table 5-2 the lack of macronutrients had certain effects on fruit composition: acidity increased in all cases excet in the minus Mg fruits; ash usually decreased reaching its lowest valued in fruits from the minus K plants; when compared to fruits picked in the "normal" plants, those lacking K showed a marked decrease both in brix and in total sugars as well; sulfur deficiency also brought a net reduction in the sugar content. Table 5-1. Levels of macronutrients found in pinapple leaves. Elements Treatment Percent of dry matter Nitrogen (N) Complete 1.29 Minus N 0.78 Phosphorus (P) Complete 0.12 Minus P .05 Potassium (K) Complete 2.28 Minus K 0.16 Calcium (Ca) Complete 1.19 Minus Ca 1.10 Magnesium (Mg) Complete 0.41 Minus Mg .29 Sulfur (S) Complete 1.00 Minus S .65 Table 5-2. Effects of macronutrients deficiency in yield and fruit characteristics. Treatment Ave. weight of Acidity As per Brix Total sugars fruits (gm) per cent cent per cent Complete 1.031 1.16 0.40 14.7 10.8 Minus N no fruit was produced Minus P no fruit was produced Minus K 246 1.44 0.26 11.9 8.3 Minus Ca 513 1.40 0.35 17.8 14.3 Minus Mg 957 0.97 0.38 15.4 13.0 Minus S 576 1.42 0.46 17.1 6.5
Resumo:
Leaf samples from coffee plants under three different fertilizations, namely NPK, NP and PK, were collected for chemical analysis. It was found that the contents of N, K, Ca, Mg and S in the first, second, third and fourth pair of leaves were the same from the statistical point of view. On the onder hand, there was a significant effect of the position of the leaf in the branch on the P content, which was higher in the first pair. With the exception of the P level ,the four pairs of leaves are chemically uniform. Nevertheless it is not considered as convenient to mix all kinds of leaves into one sample, since the composition may vary a great deal when sampling is done some other time, such as the period of fruit growing. It is recommended therefore that either the third or the fourth pair leaves should be collected for routine work in foliar diagnosis.