34 resultados para HUSK
em Scielo Saúde Pública - SP
Resumo:
Flooded rice cultivation promotes anaerobic conditions, favoring the formation of short chain organic acids such as acetic acid, which may be toxic to the crop. The objective of this study was to evaluate the effect of acetic acid on rice seeds coated with rice husk ash. The experiment was arranged in a 2 x 5 x 5 factorial randomized design, with two cultivars (IRGA 424 and BRS Querência), five doses of coating material (0, 2, 3,4 e 5 g kg-1 seed) and five concentrations of acetic acid (0, 3, 6, 9 and 12 mM), with 4 replications, totaling 50 treatments. The variables first count of germination, germination, shoot and root length, dry weight of shoots and roots were recorded. The results showed that coating rice seeds with rice husk ash up to 5 g kg-1 seed does not influence the performance of rice seeds of cultivars IRGA 424 and BRS Querência when exposed to concentrations of 12 mM acetic acid. The presence of acetic acid in the substrates used for seed germination reduced the vigor and viability of seeds of cultivars IRGA 424 and BRS Querência, as well as seedling development, affecting mainly the roots of BRS Querência.
Resumo:
Rice husk ash (RHA) is a by-product from the burning of rice husk that can have favorable effects on the soil in terms of acidity correction. The objectives of this study were to determine the effective calcium carbonate equivalent (ECC) of RHA under field conditions, and establish technical criteria as a basis for estimating the overall ECC of RHA. The 12 treatments of the experiment consisted of 10 RHA dosages (0, 10, 20, 30, 40, 60, 80, 100, 120, and 140 Mg ha-1) and two references, one of which was an absolute control (AC) and the other a plot limed and fertilized according to official recommendations (recommended fertilization - RF). The soil was sampled twice (15 and 210 days after incorporating RHA), in the layers 0.00-0.10 and 0.10-0.20 m, to determine the pH(H2O) and base saturation (V%). The ECC and neutralizing value (NV) of RHA were also determined. The results showed that RHA neutralizes soil acidity, in a faster reaction than conventional limestone, despite a low ECC (around 3 %).
Resumo:
ABSTRACT The combustion of rice husk generates a partially burnt mixture called rice husk ash (RHA) that can be used as a source of nutrients to crops and as a conditioner of soil physical properties. The objective of this study was to evaluate the effect of RHA levels on the hydro-physical properties of a Typic Hapludult. The experimental design was composed of random blocks with four replications, which comprised plots of 24 m2 and treatments with increasing RHA rates: 0, 40, 80 and 120 Mg ha-1. Undisturbed soil samples were collected in the soil layers of 0.00-0.10 and 0.10-0.20 m after nine months of RHA application, using steel cylinders (0.03 m of height and 0.047 m of diameter). These samples were used to determine soil bulk density (Bd), total soil porosity (TP), soil macroporosity (Ma), soil microporosity (Mi) and the available water capacity (AWC). Disturbed soil samples were collected to determine the stability of soil aggregates in water, mean weight diameter of water stable aggregates (MWD), and soil particle size distribution. The results show that, as the RHA rate increased in the soil, Bd values decreased and TP, Ma and MWD values increased. No effect of RHA was found on Mi and AWC values. The effects of RHA on the S parameter (Dexter, 2004), precompression stress and compression index (Dias Junior and Pierce, 1995) values are consistent those shown for density and total porosity. Rice husk ash was shown to be an efficient residue to improve soil physical properties, mainly at rates between 40 and 80 Mg ha-1. Rice husk ash reduces bulk density and increases total porosity, macroporosity and soil aggregation, but does not affect microporosity, field capacity, permanent wilting point, and available water capacity of the soil. The effect of rice husk ash on the S parameter, precompression stress and index compressibility coefficient values are consistent with those observed for the bulk density and total porosity.
Resumo:
This paper presents a study on the production of silica gel in hydrothermal process using residual rice husk ash. Measurements of the chemical composition, X-ray diffraction, infrared spectroscopy, particle size distribution, and pozzolanic activity were carried out in order to characterize the obtained material, and the optimal silica gel was selected for use as a mineral additive in cement pastes. The compressive strengths were determined for cement pastes containing silica gel (0.0, 2.5 or 5% by mass) in different times. The results indicate that the mixtures containing silica gel showed improved mechanical behavior over all time periods evaluated.
Resumo:
This study compared properties of silica (SiO2) from rice husk (RH) and rice husk ash (RHA) extracted by acid- and heat-treatment. The SiO2 from RH was in amorphous phase with nearly 100% purity while that from RHA was in crystalline phase with 97.56% purity. Both extracted SiO2 were used in the synthesis of zeolite NaY but that from RH was better due to the efficiency in product recovery and simplicity of extraction. After the NaY was exchanged to NH4Y and calcined to convert to HY, the product did not carry over the textural properties of the parent NaY and NH4Y.
Resumo:
Rice husk silica (RHS) and NaY were used as supports for potassium (K) prepared from acetate buffer (B) and acetate (A) solutions. K loading did not destroy the NaY structure, but it caused a decrease in the surface area; the K species resided in micropores and on the external surface. In contrast, K loading resulted in the collapse and a decrease in the surface area of RHS. It was found that 12K/NaY-B was the most active catalyst for the transesterification of Jatropha seed oil. The minimum K content in K/NaY-B that provided complete conversion of the Jatropha seed oil was 11 wt%, and the biodiesel yield was 77.9%.
Resumo:
This work presents the results of a study on the hydration of pastes containing calcium hydroxide and either rice husk ash (RHA) or sugar cane bagasse ash (SCBA) in various initial CaO/SiO2 molar ratios. The products of the reactions were characterized by thermal analyses X-ray diffraction, and scanning electron microscopy. In the case of the RHA pastes, the product was composed of CaO-SiO2-H2O (type I C-S-H) or CaO-SiO2-H2O (type II C-S-H) according to the CaO/SiO2 ratio of the mixture. In contrast, in the case of the SBCA pastes, the product was composed primarily of CaO-SiO2-H2O that differed from both the previous types; the product also contained inclusions of calcium aluminate hydrates.
Resumo:
Mordenite (MOR) was synthesized using rice husk silica and modified by base (B), acid (A) or acid-base (AB) and converted to H-form. The modification did not destroy the MOR structure but increased surface area and generated mesopores. Lewis acidity of the parent and modified MOR samples investigated by aluminum NMR and NH3-TPD showed a decrease in the following order: HMOR > BMOR > ABMOR > AMOR. For the catalytic transformation of methylbutynol, ABMOR provided the highest conversion and selectivity of products from acid sites.
Resumo:
In the present study, we investigated the in vitro anti-tumoral activities of fractions from aqueous extracts of the husk fiber of the typical A and common varieties of Cocos nucifera (Palmae). Cytotoxicity against leukemia cells was determined by the 3-[4,5-dimethylthiazol-2-yl]-2,5-diphenyltetrazolium bromide (MTT) assay. Cells (2 x 104/well) were incubated with 0, 5, 50 or 500 µg/mL high- or low-molecular weight fractions for 48 h, treated with MTT and absorbance was measured with an ELISA reader. The results showed that both varieties have almost similar antitumoral activity against the leukemia cell line K562 (60.1 ± 8.5 and 47.5 ± 11.9% for the typical A and common varieties, respectively). Separation of the crude extracts with Amicon membranes yielded fractions with molecular weights ranging in size from 1-3 kDa (fraction A) to 3-10 kDa (fraction B) and to more than 10 kDa (fraction C). Cells were treated with 500 µg/mL of these fractions and cytotoxicity was evaluated by MTT. Fractions ranging in molecular weight from 1-10 kDa had higher cytotoxicity. Interestingly, C. nucifera extracts were also active against Lucena 1, a multidrug-resistant leukemia cell line. Their cytotoxicity against this cell line was about 50% (51.9 ± 3.2 and 56.3 ± 2.9 for varieties typical A and common, respectively). Since the common C. nucifera variety is extensively cultured in Brazil and the husk fiber is its industrial by-product, the results obtained in the present study suggest that it might be a very inexpensive source of new antineoplastic and anti-multidrug resistant drugs that warrants further investigation.
Resumo:
The vegetative propagation of ornamental plants can be accelerated by applying plant growth regulators. Amongst them, the use of auxins, plant hormones with physiological effects on cell elongation and rooting have stood out. Alternatively, the application of humic acids, bioactive fraction of soil organic matter, also results in increases in rooting cuttings of ornamental plants. The objective of this work was to study the growth characteristics and the nutritional contents of croton and hibiscus plants during acclimation of seedlings in response to different concentrations of indolebutyric acid (IBA) and humic acid (HA) applied to cuttings for rooting. The experiment was conducted in greenhouse, and the apical stem cuttings were treated with solutions with concentrations of 0, 250, 500, 1000 and 2000 mg L-1of IBA and 0, 10, 20, 30 and 40 mg L-1 of C from HA. At 45 days of rooting in carbonized rice husk, they were individually transferred to plastic bags of 2.0 dm3 containing a mixture of soil: sand: manure (2: 1: 1) as substrate. At 90 days of acclimation, the plants were collected for measurement of growth and nutritional variables. The results showed that the application of the IBA stimulates the absorption of nutrients and growth of croton cuttings and transplanted hibiscus, contributing to formation of vigorous seedlings. A similar response occurred with the application of HA in hibiscus cuttings
Resumo:
Due to human activity, large amounts of organic residue are generated daily. Therefore, an adequate use in agricultural activities requires the characterization of the main properties. The chemical and physical characterization is important when planning the use and management of organic residue. In this study, chemical and physical properties of charcoal, coffee husk, pine-bark, cattle manure, chicken manure, coconut fiber, sewage sludge, peat, and vermiculite were determined. The following properties were analyzed: N-NH4+, N-N0(3)-, and total concentrations of N, P, S, K, Ca, Mg, Mn, Zn, Cu, and B, as well as pH, Electrical Conductivity (EC) and bulk density. Coffee husk, sewage sludge, chicken manure and cattle manure were generally richer in nutrients. The EC values of these residues were also the highest (0.08 - 40.6 dS m-1). Peat and sewage sludge had the highest bulky density. Sodium contents varied from 0 to 4.75 g kg-1, with the highest levels in chicken manure, cattle manure and sewage sludge. Great care must be taken when establishing proportions of organic residues in the production of substrates with coffee husk, cattle or chicken manure or sewage sludge in the calculation of the applied fertilizer quantity in crop fertilization programs.
Resumo:
Large quantities of poultry litter are being produced in Brazil, which contain appreciable amounts of phosphorus (P) that could be of environmental concern. To assess the immediate environmental threat, five poultry litters composed of diverse bedding material were incubated for 43 days under greenhouse conditions. The litters consisted of: coffee bean husk (CH); wood chips (WC); rice husk (RH); ground corn cobs (CC) and ground napier grass (NG) (Pennisetum purpureum Schum.), in which the change in forms of soluble P was evaluated using 31P NMR spectroscopy. On average, 80.2 and 19.8 % of the total P in the extract, respectively, accounted for the inorganic and organic forms before incubation and 48 % of the organic P was mineralized to inorganic P in 43 days of incubation. Wide variation in the organic P mineralization rate (from 82 % -WC to 4 % - NG) was observed among litters. Inorganic orthophosphate (99.9 %) and pyrophosphate (0.1 %) were the only inorganic P forms, whereas the organic P forms orthophosphate monoesters (76.3 %) and diester (23.7 %) were detected. Diester P compounds were mineralized almost completely in all litters, except in the CH litter, within the incubation period. Pyrophosphates contributed with less than 0.5% and remained unaltered during the incubation period. Wood-chip litter had a higher organic P (40 %) content and a higher diester: monoester ratio; it was therefore mineralized rapidly, within the first 15 days, achieving steady state by the 29th day. Distinct mineralization patterns were observed in the litter when incubated with a clayey Oxisol. The substantial decrease observed in the organic P fraction (Po) of the litter types followed the order: CH (45 %) > CC (25 %) > RH (13 %) ≈ NG (12 %) > WC (5 %), whereas the Pi fraction increased. Incubation of RH litter in soil slowed down the mineralization of organic P.
Resumo:
The application of organic residues to the soil can increase soluble organic carbon (SOC) and affect the pH and electrolytic conductivity (EC) of the soil. However, the magnitude of these changes depends on the type of residue and the applied dose. This study aimed to evaluate the effect of increasing C rates contained in organic residue on the pH, EC, water-extractable total carbon (WETC), water-extractable organic carbon (WEOC), and water-extractable inorganic carbon (WEIC) in soil treated with manure (chicken, swine, and quail), sawdust, coffee husk, and sewage sludge. The levels of total C (TC- KH2PO4), organic carbon (OC- KH2PO4), and inorganic C (IC- KH2PO4) extractable by a 0.1 mol L-1 KH2PO4 solution were also quantified in soil under the effect of increasing rates of chicken and quail manures. The following rates of organic residue C were applied to a dystrophic Red Latosol (Oxisol) sample: 0, 2,000, 5,000, 10,000, and 20,000 mg kg-1. The addition of organic residues to the soil increased pH, except in the case of sewage sludge, which acidified the soil. The acidity correction potential of chicken and quail manure was highest, dependent on the manure rate applied; regardless of the dose used, sawdust barely alters the soil pH. At all tested rates, the EC of the soil treated with swine manure, coffee husk, and sawdust remained below 2.0 dS m-1, which is a critical level for salinity-sensitive crops. However, the application of chicken or quail manure and sewage sludge at certain rates increased the EC to values above this threshold level. Highest levels of WETC, WEOC, and WEIC were obtained when chicken and quail manure and coffee husk were applied to the Oxisol. The quantities of SOC extracted by KH2PO4 were higher than the quantities extracted by water, demonstrating the ability of soil to adsorb C into its colloids.
Resumo:
With the objective of verifying the response of Euterpe oleracea seedlings to seven arbuscular mycorrhizal fungi species, an experimental trial was carried out under greenhouse conditions. Seeds of E. oleracea were sown in carbonized rice husk. Germinating seeds were initially transferred to plastic cups, containing fumigated Reddish Yellow Quartz Sand and inoculated with arbuscular mycorrhizal fungi. Two months later, seedlings were transferred to 2 kg black plastic bags, containing the same soil without fumigation. Plant growth and mineral nutrients were evaluated nine months after mycorrhizal inoculation. Differential effects were observed among the species tested, with Scutellispora gilmorei being the most effective ones in promoting growth and nutrient content of E. oleracea seedlings. The increment resulted from inoculation with S. gilmorei were 92% in total plant height, 116% in stem diameter, 361% in dry matter production, 191% in N, 664% in P, 46% in K, 562% in Ca, 363% in Mg and 350% in Zn contents, comparing to uninoculated controls. Infected root length was positively correlated to nutrient content and plant growth. It was concluded that growth and nutrient uptake of E. oleracea seedlings could be significantly improved by inoculation of effective arbuscular mycorrhizal fungi.
Resumo:
The objective of this work was to set up ideal conditions for conidia mass production of Dicyma pulvinata. Four isolates were compared in terms of their growth and conidia production on various substrates (grains of parboiled rice, common rice, maize and wheat, besides chipped maize and rice husk), temperatures (19, 22, 25, 28 and 31ºC), growth containers (aluminum trays, polypropylene bags and Erlenmeyers) and light regimes (continuous darkness, 6 and 12 hours of light/darkness, and continuous light). Temperature effects on conidia germination capacity were also evaluated. The experiments were done in randomized complete block designs, in factorial arrangements (isolates x treatments - substrates, containers, temperatures and light regimes), with four replicates. In general, parboiled rice and polypropylene bags provided the best development of the fungus. Complete darkness and 6 hours of light increased mycelial growth, whereas continuous light favored sporulation. All tested temperatures favored the cultures of the fungus, except 31ºC. Temperatures between 19 and 25ºC ensure spore germination of more than 76%.