15 resultados para HINDLIMB KINEMATICS
em Scielo Saúde Pública - SP
Resumo:
Bone weakening can occur due to the absence of load on the skeleton or even short periods of decreased physical activity. Therefore, musculoskeletal diseases that involve temporary immobilization by casts, inactivity or tension increases the risk of fractures. Physical activity is the most studied procedure both to prevent damage and to restore bone structure. The present study aimed at evaluating, by bone densitometry on rat femurs, the influence of hindlimb unloading and later running activity on treadmill or free movement. Sixty-four Wistar rats were used, aged 65 days with a mean corporal mass of 316.11g, randomly divided into eight experimental groups: group 1, the suspended control with seven animals under hindlimb unloading regimen for 28 days, then euthanized; groups 2 and 3, the trained suspended comprising of 7 and five animals, respectively, subjected to hindlimb unloading for 28 days, followed by treadmill exercise for 28 days (group 2) or 56 days (group 3), then euthanized; groups 4 and 5, designated free suspended, comprised of 7 animals each under hindlimb unloading regimen for 28 days followed by free activity in cages for 28 days (group 4) or 56 days (group 5), then euthanized; groups 6, 7 and 8, negative controls, each with 8 animals allowed to free activity in cages and euthanized at the ages of 93, 121 and 149 days, respectively. Bone mineral density (BMD) of the left femur was analyzed by bone densitometry. Unloading by tail-suspension decreased BMD while treadmill training and free activity in cages promoted its recovery in a similar way and over time.
Resumo:
AbstractBackground:Organ injury occurs not only during periods of ischemia but also during reperfusion. It is known that ischemia reperfusion (IR) causes both remote organ and local injuries.Objective:This study evaluated the effects of tramadol on the heart as a remote organ after acute hindlimb IR.Methods:Thirty healthy mature male Wistar rats were allocated randomly into three groups: Group I (sham), Group II (IR), and Group III (IR + tramadol). Ischemia was induced in anesthetized rats by left femoral artery clamping for 3 h, followed by 3 h of reperfusion. Tramadol (20 mg/kg, intravenous) was administered immediately prior to reperfusion. At the end of the reperfusion, animals were euthanized, and hearts were harvested for histological and biochemical examination.Results:The levels of superoxide dismutase (SOD), catalase (CAT), and glutathione peroxidase (GPx) were higher in Groups I and III than those in Group II (p < 0.05). In comparison with other groups, tissue malondialdehyde (MDA) levels in Group II were significantly increased (p < 0.05), and this increase was prevented by tramadol. Histopathological changes, including microscopic bleeding, edema, neutrophil infiltration, and necrosis, were scored. The total injuryscore in Group III was significantly decreased (p < 0.05) compared with Group II.Conclusion:From the histological and biochemical perspectives, treatment with tramadol alleviated the myocardial injuries induced by skeletal muscle IR in this experimental model.
Resumo:
The objective of the present study was to propose an orthosis of light material that would be functional for the animal and that would maintain only the ankle joint immobilized. Male Wistar rats (3 to 4 months old, 250-300 g) were divided into 2 groups (N = 6): control and immobilized for 7 days. Rats were anesthetized with sodium pentobarbital (40 mg/kg weight) and the left hindlimb was immobilized with the orthoses composed of acrylic resin model, abdominal belt and lateral supports. The following analyses were performed: glycogen content of the soleus, extensor digitorum longus, white gastrocnemius, red gastrocnemius, and tibialis anterior muscles by the phenol sulfuric method, and the weight, fiber area and intramuscular connective tissue of the soleus by the planimetric system. Data were analyzed statistically by the Kolmogorov-Smirnov, Student t and Wilcoxon tests. Immobilization decreased glycogen in all muscles (P < 0.05; soleus: 31.6%, white gastrocnemius: 56.6%, red gastrocnemius: 39%, extensor digitorum longus: 41.7%, tibialis anterior: 45.2%) in addition to reducing soleus weight by 34% (P < 0.05). Furthermore, immobilization promoted reduction of the fiber area (43%, P < 0.05) and increased the connective tissue (200%, P < 0.05). The orthosis model was efficient comparing with another alternative immobilization model, like plaster casts, in promoting skeletal muscle alterations, indicating that it could be used as a new model in other studies related to muscle disuse.
Resumo:
We microscopically and mechanically evaluated the femurs of rats subjected to hindlimb unloading (tail suspension) followed by treadmill training. Female Wistar rats were randomly divided into five groups containing 12-14 rats: control I (118 days old), control II (139 days old), suspended (tail suspension for 28 days), suspended-released (released for 21 days after 28 days of suspension), and suspended-trained (trained for 21 days after 28 days of suspension). We measured bone resistance by bending-compression mechanical tests of the entire proximal half of the femur and three-point bending tests of diaphyseal cortical bone. We determined bone microstructure by tetracycline labeling of trabecular and cortical bone. We found that tail suspension weakened bone (ultimate load = 86.3 ± 13.5 N, tenacity modulus = 0.027 ± 0.011 MPa·m vs ultimate load = 101.5 ± 10.5 N, tenacity modulus = 0.019 ± 0.006 MPa·m in control I animals). The tenacity modulus for suspended and released animals was 0.023 ± 0.010 MPa·m vs 0.046 ± 0.018 MPa·m for trained animals and 0.035 ± 0.010 MPa·m for control animals. These data indicate that normal activity and training resulted in recovered bone resistance, but suspended-released rats presented femoral head flattening and earlier closure of the growth plate. Microscopically, we found that suspension inhibited new bone subperiosteal and endosteal formation. The bone disuse atrophy secondary to hypoactivity in rats can be reversed by an early regime of exercising, which is more advantageous than ordinary cage activities alone.
Resumo:
Kinematic analysis relates to the relative movement between rigid bodies and finds application in gait analysis and other body movements, interpretation of their data when there is change, determines the choice of treatment to be instituted. The objective of this study was to standardize the march of Dog Golden Retriever Healthy to assist in the diagnosis and treatment of musculoskeletal disorders. We used a kinematic analysis system to analyse the gait of seven dogs Golden Retriever, female, aged between 2 and 4 years, weighing 21.5 to 28 kg, clinically normal. Flexion and extension were described for shoulder, elbow, carpal, hip, femorotibialis and tarsal joints. The gait was characterized lateral and had accepted hypothesis of normality for all variables, except for the stance of hip and elbow, considering a confidence level of 95%, significance level α = 0.05. Variations have been attributed to displacement of the stripes during movement and the duplicated number of reviews. The kinematic analysis proved to be a consistent method of evaluation of the movement during canine gait and the data can be used in the diagnosis and evaluation of canine gait in comparison to other studies and treatment of dogs with musculoskeletal disorders.
Resumo:
This paper presents the kinematic study of robotic biped locomotion systems. The main purpose is to determine the kinematic characteristics and the system performance during walking. For that objective, the prescribed motion of the biped is completely characterised in terms of five locomotion variables: step length, hip height, maximum hip ripple, maximum foot clearance and link lengths. In this work, we propose four methods to quantitatively measure the performance of the walking robot: energy analysis, perturbation analysis, lowpass frequency response and locomobility measure. These performance measures are discussed and compared in determining the robustness and effectiveness of the resulting locomotion.
Resumo:
This work presents recent results concerning a design methodology used to estimate the positioning deviation for a gantry (Cartesian) manipulator, related mainly to structural elastic deformation of components during operational conditions. The case-study manipulator is classified as gantry type and its basic dimensions are 1,53m x 0,97m x 1,38m. The dimensions used for the calculation of effective workspace due to end-effector path displacement are: 1m x 0,5m x 0,5m. The manipulator is composed by four basic modules defined as module X, module Y, module Z and terminal arm, where is connected the end-effector. Each module controlled axis performs a linear-parabolic positioning movement. The planning path algorithm has the maximum velocity and the total distance as input parameters for a given task. The acceleration and deceleration times are the same. Denavit-Hartemberg parameterization method is used in the manipulator kinematics model. The gantry manipulator can be modeled as four rigid bodies with three degrees-of-freedom in translational movements, connected as an open kinematics chain. Dynamic analysis were performed considering inertial parameters specification such as component mass, inertia and center of gravity position of each module. These parameters are essential for a correct manipulator dynamic modelling, due to multiple possibilities of motion and manipulation of objects with different masses. The dynamic analysis consists of a mathematical modelling of the static and dynamic interactions among the modules. The computation of the structural deformations uses the finite element method (FEM).
Resumo:
Industrial applications demand that robots operate in agreement with the position and orientation of their end effector. It is necessary to solve the kinematics inverse problem. This allows the displacement of the joints of the manipulator to be determined, to accomplish a given objective. Complete studies of dynamical control of joint robotics are also necessary. Initially, this article focuses on the implementation of numerical algorithms for the solution of the kinematics inverse problem and the modeling and simulation of dynamic systems. This is done using real time implementation. The modeling and simulation of dynamic systems are performed emphasizing off-line programming. In sequence, a complete study of the control strategies is carried out through the study of several elements of a robotic joint, such as: DC motor, inertia, and gearbox. Finally a trajectory generator, used as input for a generic group of joints, is developed and a proposal of the controller's implementation of joints, using EPLD development system, is presented.
Resumo:
In this paper, the optimum design of 3R manipulators is formulated and solved by using an algebraic formulation of workspace boundary. A manipulator design can be approached as a problem of optimization, in which the objective functions are the size of the manipulator and workspace volume; and the constrains can be given as a prescribed workspace volume. The numerical solution of the optimization problem is investigated by using two different numerical techniques, namely, sequential quadratic programming and simulated annealing. Numerical examples illustrate a design procedure and show the efficiency of the proposed algorithms.
Resumo:
The effects of postnatal amitraz exposure on physical and behavioral parameters were studied in Wistar rats, whose lactating dams received the pesticide (10 mg/kg) orally on days 1, 4, 7, 10, 13, 16 and 19 of lactation; control dams received distilled water (1 ml/kg) on the same days. A total of 18 different litters (9 of them control and 9 experimental) born after a 21-day gestation were used. The results showed that the median effective time (ET50) for fur development, eye opening, testis descent and onset of the startle response were increased in rats postnatally exposed to amitraz (2.7, 15.1, 21.6 and 15.3 days, respectively) compared to those of the control pups (1.8, 14.0, 19.9 and 12.9 days, respectively). The ages of incisor eruption, total unfolding of the external ears, vaginal and ear opening and the time taken to perform the grasping hindlimb reflex were not affected by amitraz exposure. Pups from dams treated with amitraz during lactation took more time (in seconds) to perform the surface righting reflex on postnatal days (PND) 3 (25.0 ± 2.0), 4 (12.3 ± 1.2) and 5 (8.7 ± 0.9) in relation to controls (10.6 ± 1.2; 4.5 ± 0.6 and 3.4 ± 0.4, respectively); the climbing response was not changed by amitraz. Postnatal amitraz exposure increased spontaneous motor activity of male and female pups in the open-field on PND 16 (140 ± 11) and 17 (124 ± 12), and 16 (104 ± 9), 17 (137 ± 9) and 18 (106 ± 8), respectively. Data on spontaneous motor activity of the control male and female pups were 59 ± 11 and 69 ± 10 for days 16 and 17 and 49 ± 9, 48 ± 7 and 56 ± 7 for days 16, 17 and 18, respectively. Some qualitative differences were also observed in spontaneous motor behavior; thus, raising the head, shoulder and pelvis matured one or two days later in the amitraz-treated offspring. Postnatal amitraz exposure did not change locomotion and rearing frequencies or immobility time in the open-field on PND 30, 60 and 90. The present findings indicate that postnatal exposure to amitraz caused transient developmental and behavioral changes in the exposed offspring and suggest that further investigation of the potential health risk of amitraz exposure to developing human and animal offsprings may be warranted.
Resumo:
The present study analyzes the ectopic development of the rat skeletal muscle originated from transplanted satellite cells. Satellite cells (10(6) cells) obtained from hindlimb muscles of newborn female 2BAW Wistar rats were injected subcutaneously into the dorsal area of adult male rats. After 3, 7, and 14 days, the transplanted tissues (N = 4-5) were processed for histochemical analysis of peripheral nerves, inactive X-chromosome and acetylcholinesterase. Nicotinic acetylcholine receptors (nAChRs) were also labeled with tetramethylrhodamine-labeled alpha-bungarotoxin. The development of ectopic muscles was successful in 86% of the implantation sites. By day 3, the transplanted cells were organized as multinucleated fibers containing multiple clusters of nAChRs (N = 2-4), resembling those from non-innervated cultured skeletal muscle fibers. After 7 days, the transplanted cells appeared as a highly vascularized tissue formed by bundles of fibers containing peripheral nuclei. The presence of X chromatin body indicated that subcutaneously developed fibers originated from female donor satellite cells. Differently from the extensor digitorum longus muscle of adult male rat (87.9 ± 1.0 µm; N = 213), the diameter of ectopic fibers (59.1 µm; N = 213) did not obey a Gaussian distribution and had a higher coefficient of variation. After 7 and 14 days, the organization of the nAChR clusters was similar to that of clusters from adult innervated extensor digitorum longus muscle. These findings indicate the histocompatibility of rats from 2BAW colony and that satellite cells transplanted into the subcutaneous space of adult animals are able to develop and fuse to form differentiated skeletal muscle fibers.
Resumo:
We investigated the relationship between fetal body weight at term (pregnancy day 21) and the extent of ossification of sternum, metacarpus, metatarsus, phalanges (proximal, medial and distal) of fore- and hindlimbs and cervical and coccygeal vertebrae in Wistar rats. The relationships between fetal body weight and sex, intrauterine position, uterine horn, horn size, and litter size were determined using historical control data (7594 fetuses; 769 litters) of untreated rats. Relationships between body weight and degree of ossification were examined in a subset of 1484 historical control fetuses (154 litters) which were subsequently cleared and stained with alizarin red S. Fetal weight was independent of horn size, uterine horn side (left or right) or intrauterine position. Males were heavier than females and fetal weight decreased with increasing litter size. Evaluation of the skeleton showed that ossification of sternum, metacarpus and metatarsus was extensively complete and independent of fetal weight on pregnancy day 21. In contrast, the extent of ossification of fore- and hindlimb phalanges and of cervical and sacrococcygeal vertebrae was dependent on fetal body weight. The strongest correlation between body weight and degree of ossification was found for hindlimb, medial and proximal phalanges. Our data therefore suggest that, in full-term rat fetuses (day 21), reduced ossification of sternum, metacarpus and metatarsus results from a localized impairment of bone calcification (i.e., a malformation or variation) rather than from general growth retardation and that ossification of hindlimb (medial and proximal) phalanges is a good indicator of treatment-induced fetal growth retardation.
Resumo:
In the present study, we modeled a reaching task as a two-link mechanism. The upper arm and forearm motion trajectories during vertical arm movements were estimated from the measured angular accelerations with dual-axis accelerometers. A data set of reaching synergies from able-bodied individuals was used to train a radial basis function artificial neural network with upper arm/forearm tangential angular accelerations. The trained radial basis function artificial neural network for the specific movements predicted forearm motion from new upper arm trajectories with high correlation (mean, 0.9149-0.941). For all other movements, prediction was low (range, 0.0316-0.8302). Results suggest that the proposed algorithm is successful in generalization over similar motions and subjects. Such networks may be used as a high-level controller that could predict forearm kinematics from voluntary movements of the upper arm. This methodology is suitable for restoring the upper limb functions of individuals with motor disabilities of the forearm, but not of the upper arm. The developed control paradigm is applicable to upper-limb orthotic systems employing functional electrical stimulation. The proposed approach is of great significance particularly for humans with spinal cord injuries in a free-living environment. The implication of a measurement system with dual-axis accelerometers, developed for this study, is further seen in the evaluation of movement during the course of rehabilitation. For this purpose, training-related changes in synergies apparent from movement kinematics during rehabilitation would characterize the extent and the course of recovery. As such, a simple system using this methodology is of particular importance for stroke patients. The results underlie the important issue of upper-limb coordination.
Resumo:
Hypoxia-inducible factor-1α (HIF-1α) is one of the most potent angiogenic growth factors. It improves angiogenesis and tissue perfusion in ischemic skeletal muscle. In the present study, we tested the hypothesis that ischemic postconditioning is effective for salvaging ischemic skeletal muscle resulting from limb ischemia-reperfusion injury, and that the mechanism involves expression of HIF-1α. Wistar rats were randomly divided into three groups (n=36 each): sham-operated (group S), hindlimb ischemia-reperfusion (group IR), and ischemic postconditioning (group IPO). Each group was divided into subgroups (n=6) according to reperfusion time: immediate (0 h, T0), 1 h (T1), 3 h (T3), 6 h (T6), 12 h (T12), and 24 h (T24). In the IPO group, three cycles of 30-s reperfusion and 30-s femoral aortic reocclusion were carried out before reperfusion. At all reperfusion times (T0-T24), serum creatine kinase (CK) and lactate dehydrogenase (LDH) activities, as well as interleukin (IL)-6, IL-10, and tumor necrosis factor-α (TNF-α) concentrations, were measured in rats after they were killed. Histological and immunohistochemical methods were used to assess the skeletal muscle damage and HIF-1α expression in skeletal muscle ischemia. In groups IR and IPO, serum LDH and CK activities and TNF-α, IL-6, and IL-10 concentrations were all significantly increased compared to group S, and HIF-1α expression was up-regulated (P<0.05 or P<0.01). In group IPO, serum LDH and CK activities and TNF-α and IL-6 concentrations were significantly decreased, IL-10 concentration was increased, HlF-1α expression was down-regulated (P<0.05 or P<0.01), and the pathological changes were reduced compared to group IR. The present study suggests that ischemic postconditioning can reduce skeletal muscle damage caused by limb ischemia-reperfusion and that its mechanisms may be related to the involvement of HlF-1α in the limb ischemia-reperfusion injury-triggered inflammatory response.
Resumo:
A sprained ankle is a common musculoskeletal sports injury and it is often treated by immobilization of the joint. Despite the beneficial effects of this therapeutic measure, the high prevalence of residual symptoms affects the quality of life, and remobilization of the joint can reverse this situation. The aim of this study was to analyze the effects of immobilization and remobilization on the ankle joint of Wistar rats. Eighteen male rats had their right hindlimb immobilized for 15 days, and were divided into the following groups: G1, immobilized; G2, remobilized freely for 14 days; and G3, remobilized by swimming and jumping in water for 14 days, performed on alternate days, with progression of time and a series of exercises. The contralateral limb was the control. After the experimental period, the ankle joints were processed for microscopic analysis. Histomorphometry did not show any significant differences between the control and immobilized/remobilized groups and members, in terms of number of chondrocytes and thickness of the articular cartilage of the tibia and talus. Morphological analysis of animals from G1 showed significant degenerative lesions in the talus, such as exposure of the subchondral bone, flocculation, and cracks between the anterior and mid-regions of the articular cartilage and the synovial membrane. Remobilization by therapeutic exercise in water led to recovery in the articular cartilage and synovial membrane of the ankle joint when compared with free remobilization, and it was shown to be an effective therapeutic measure in the recovery of the ankle joint.