86 resultados para Guinea-pig
em Scielo Saúde Pública - SP
Resumo:
Antibodies reacting with simian rotavirus SAII were detected by enzyme immunoassay (EIA) and Western blot assay (WBA) in sera from guinea pigs bred for experimental use at the Fundação Oswaldo Cruz, Rio de Janeiro, Brazil. The proportion of antibody-positive animals and the antibody titres rose sharply in 1985, were maintained at a high levels in 1986 and declined in 1987. There were no obvious signs of disease coinciding with serological evidence of infection. Results of WBA suggest that the virus involved belongs to subgroup 1 of group A rotaviruses.
Resumo:
The elevation of intracellular cyclic AMP by phosphodiesterase (PDE)4 inhibitors in eosinophils is associated with inhibition of the activation and recruitment of these cells. We have previously shown that systemic treatment with the PDE4 inhibitor rolipram effectively inhibt eosinophil migration in guinea pig skin. In the present study we compare the oral potency and efficacy of the PDE4 inhibitors rolipram, RP 73401 and CDP 840 on allergic and PAF-induced eosinophil recruitment. Rolipram and RP 73401 were equally effective and potent when given by the oral route and much more active than the PDE4 inhibitor CDP 840. We suggest that this guinea pig model of allergic and mediator-induced eosinophil recruitment is both a sensitive and simple tool to test the efficacy and potency of PDE4 inhibitors in vivo.
Resumo:
The phytochemical investigation of Bakeridesia pickelii Monteiro led to the isolation of seven compounds: beta-sitosterol, a mixture of sitosteryl-3-O-beta-D-glucopyranoside and stigmasteryl-3-O-beta-D-glucopyranoside, vanillic acid, p-coumaric acid, quercetin 3-O-beta-D-glucopyranoside (isoquercitrin) and kaempferol-3-O-beta-D-(6"-E-p -coumaroyl) glucopyranoside (tiliroside), which was isolated as the major component. Their structures were elucidated on the basis of spectroscopic data such as IR, ¹H and 13C NMR, including two-dimensional techniques. Tiliroside relaxed the guinea-pig ileum pre-contracted with KCl 40 mM (EC50 = 9.5 ± 1.0 x 10-5 M), acetylcholine 10-6 M (EC50 = 2.3 ± 0.9 x 10-5 M) or histamine 10-6 M (EC50 = 4.1 ± 1.0 x 10-5 M) in a concentration-dependent manner.
Resumo:
We investigated the effects of piperitenone oxide (PO), a major constituent of the essential oil of Mentha x villosa, on the guinea pig ileum. PO (30 to 740 µg/ml) relaxed basal tonus without significantly altering the resting membrane potential. In addition, PO relaxed preparations precontracted with either 60 mM K+ or 5 mM tetraethylammonium in a concentration-dependent manner. At concentrations from 0.1 to 10 µg/ml PO potentiated acetylcholine-induced contractions, while higher concentrations (>30 µg/ml) blocked this response. These higher PO concentrations also inhibited contractions induced by 60 mM K+. PO also blocked the components of acetylcholine contraction which are not sensitive to nifedipine or to solutions with nominal zero Ca2+ and EGTA. These results show that PO is a relaxant of intestinal smooth muscle and suggest that this activity may be mediated at least in part by an intracellular effect
Resumo:
We have investigated the effects of L-arginine, D-arginine and L-lysine on airway smooth muscle responsiveness to spasmogens in vitro. Both L-arginine and D-arginine (100 mM) significantly reduced the contractile potency and maximal contractile response to histamine but not to methacholine or potassium chloride in guinea-pig epithelium-denuded isolated trachea. Similarly, the contractile response to histamine was significantly reduced by L-arginine (100 mM) in rabbit epithelium-denuded isolated bronchus. The amino acid L-lysine (100 mM) failed to significantly alter the contractile potency of histamine in guinea-pig isolated trachea (P>0.05). In guinea-pig isolated trachea precontracted with histamine, both L-arginine and D-arginine produced a concentration-dependent relaxation which was not significantly altered by epithelium removal or by the presence of the nitric oxide synthase inhibitor, NG-nitro L-arginine methyl ester (L-NAME; 50 µM). Thus, at very high concentrations, arginine exhibit a non-competitive antagonism of histamine-induced contraction of isolated airway preparations that was independent of the generation of nitric oxide and was not dependent on charge. These observations confirm previous studies of cutaneous permeability responses and of contractile responses of guinea-pig isolated ileal smooth muscle. Taken together, the data suggest that high concentrations of arginine can exert an anti-histamine effect.
Resumo:
Tx1, a neurotoxin isolated from the venom of the South American spider Phoneutria nigriventer, produces tail elevation, behavioral excitation and spastic paralysis of the hind limbs after intracerebroventricular injection in mice. Since Tx1 contracts isolated guinea pig ileum, we have investigated the effect of this toxin on acetylcholine release, as well as its binding to myenteric plexus-longitudinal muscle membranes from the guinea pig ileum. [125I]-Tx1 binds specifically and with high affinity (Kd = 0.36 ± 0.02 nM) to a single, non-interacting (nH = 1.1), low capacity (Bmax 1.1 pmol/mg protein) binding site. In competition experiments using several compounds (including ion channel ligands), only PhTx2 and PhTx3 competed with [125I]-Tx1 for specific binding sites (K0.5 apparent = 7.50 x 10-4 g/l and 1.85 x 10-5 g/l, respectively). PhTx2 and PhTx3, fractions from P. nigriventer venom, contain toxins acting on sodium and calcium channels, respectively. However, the neurotoxin PhTx2-6, one of the isoforms found in the PhTx2 pool, did not affect [125I]-Tx1 binding. Tx1 reduced the [3H]-ACh release evoked by the PhTx2 pool by 33%, but did not affect basal or KCl-induced [3H]-ACh release. Based on these results, as well as on the homology of Tx1 with toxins acting on calcium channels (w-Aga IA and IB) and its competition with [125I]-w-Cono GVIA in the central nervous system, we suggest that the target site for Tx1 may be calcium channels.
Resumo:
We examined the effect of crotoxin, the neurotoxic complex from the venom of the South American rattlesnake Crotalus durissus terrificus, on the uptake of ³H-choline in minces of smooth muscle myenteric plexus from guinea pig ileum. In the concentration range used (0.03-1 µM) and up to 10 min of treatment, crotoxin decreased ³H-choline uptake by 50-75% compared to control. This inhibition was time dependent and did not seem to be associated with the disruption of the neuronal membrane, because at least for the first 20 min of tissue exposure to the toxin (up to 1 µM) the levels of lactate dehydrogenase (LDH) released into the supernatant were similar to those of controls. Higher concentrations of crotoxin or more extensive incubation times with this toxin resulted in elevation of LDH activity detected in the assay supernatant. The inhibitory effect of crotoxin on ³H-choline uptake seems to be associated with its phospholipase activity since the equimolar substitution of Sr2+ for Ca2+ in the incubation medium or the modification of the toxin with p-bromophenacyl bromide substantially decreased this effect. Our results show that crotoxin inhibits ³H-choline uptake with high affinity (EC25 = 10 ± 5 nM). We suggest that this inhibition could explain, at least in part, the blocking effect of crotoxin on neurotransmission.
Resumo:
We examined some of the mechanisms by which the aspirin metabolite and the naturally occurring metabolite gentisic acid induced relaxation of the guinea pig trachea in vitro. In preparations with or without epithelium and contracted by histamine, gentisic acid caused concentration-dependent and reproducible relaxation, with mean EC50 values of 18 µM and Emax of 100% (N = 10) or 20 µM and Emax of 92% (N = 10), respectively. The relaxation caused by gentisic acid was of slow onset in comparison to that caused by norepinephrine, theophylline or vasoactive intestinal peptide (VIP). The relative rank order of potency was: salbutamol 7.9 > VIP 7.0 > gentisic acid 4.7 > theophylline 3.7. Gentisic acid-induced relaxation was markedly reduced (24 ± 7.0, 43 ± 3.9 and 78 ± 5.6%) in preparations with elevated potassium concentration in the medium (20, 40 or 80 mM, respectively). Tetraethylammonium (100 µM), a nonselective blocker of the potassium channels, partially inhibited the relaxation response to gentisic acid, while 4-AP (10 µM), a blocker of the voltage potassium channel, inhibited gentisic acid-induced relaxation by 41 ± 12%. Glibenclamide (1 or 3 µM), at a concentration which markedly inhibited the relaxation induced by the opener of ATP-sensitive K+ channels, levcromakalim, had no effect on the relaxation induced by gentisic acid. Charybdotoxin (0.1 or 0.3 µM), a selective blocker of the large-conductance Ca2+-activated K+ channels, caused rightward shifts (6- and 7-fold) of the gentisic acid concentration-relaxation curve. L-N G-nitroarginine (100 µM), a NO synthase inhibitor, had no effect on the relaxant effect of gentisic acid, and caused a slight displacement to the right in the relaxant effect of the gentisic acid curve at 300 µM, while methylene blue (10 or 30 µM) or ODQ (1 µM), the inhibitors of soluble guanylate cyclase, all failed to affect gentisic acid-induced relaxation. D-P-Cl-Phe6,Leu17[VIP] (0.1 µM), a VIP receptor antagonist, significantly inhibited (37 ± 7%) relaxation induced by gentisic acid, whereas CGRP (8-37) (0.1 µM), a CGRP antagonist, only slightly enhanced the action of gentisic acid. Taken together, these results provide functional evidence for the direct activation of voltage and large-conductance Ca+2-activated K+ channels, or indirect modulation of potassium channels induced by VIP receptors and accounts for the predominant relaxation response caused by gentisic acid in the guinea pig trachea.
Resumo:
Non-absorbable microgranular hydroxyapatite was infiltrated into the subepidermal abdominal region of guinea pigs in order to assess the possibility of using this material to correct deficiencies in orbital volume. Microgranular hydroxyapatite (2.0 ml) was subepidermally infiltrated into the abdominal region of 20 guinea pigs. The animals were divided into four experimental groups of 5 animals each, which were killed 7 (G1), 15 (G2), 30 (G3) and 60 (G4) days after infiltration. The area and the largest and smallest diameters of the nodules formed by infiltration were evaluated at the site of infiltration and histological examination was performed. The mean granuloma area was similar in all groups. Histopathological examination showed that the material remained isolated from surrounding tissues by a pseudocapsule that became denser throughout the experiment. A host reaction started with young fibroblastic tissue that evolved to dense tissue until cartilaginous tissue was formed in G4, progressively advancing towards the center of the granuloma from G1 to G4. Non-absorbable microgranular hydroxyapatite is an inert material that was well tolerated by the animals studied, with maintenance of the infiltrated volume, and may perhaps be useful to fill anophthalmic cavities.
Resumo:
Many pharmacological effects have been ascribed to extracts of Psidium guajava L. (guava) leaves. However, in spite of its widespread use in Brazilian folk medicine and a reasonable number of scientific reports about it, we could not find any study dealing with its action on the mammalian myocardium. In the present study, by measuring isometric force, we observed that the crude extract of P. guajava (water-alcohol extract obtained by macerating dry leaves) depresses the guinea pig atrial contractility in a concentration-dependent fashion (N = 8 hearts, 15 trials). The compound with cardiac activity was concentrated by extraction in a Soxhlet apparatus using 17 M glacial acetic acid after removing the less polar fractions (hexane, chloroform, acetone, ethanol and methanol), suggesting that this compound is a highly polar substance. In the isolated guinea pig left atrium the acetic acid fraction (10-800 mg/l) of P. guajava 1) reversibly decreased myocardial force in a concentration-dependent fashion (EC50 = 0.07g/l, N = 5 hearts, 9 trials, P<0.05), 2) increased the atrial relaxation time measured at 20% of the force amplitude up to 35% (91 ± 15 to 123 ± 30 ms, N = 3 hearts, 6 trials, P<0.05), 3) abolished the positive staircase effect (Bowditch phenomenon) in a concentration-dependent fashion suggesting a decrease of the cellular inward calcium current (N = 4 hearts, 8 trials, P<0.05), and 4) its inotropic effect was abolished by cholinergic receptor blockade with 1.5 mM atropine sulfate, indicating a cholinergic involvement in the mechanism of action of the extract (N = 7 hearts, 15 trials, P<0.05). The acetic acid extract was 20 times more potent than crude extract (EC50 = 1.4 g/l). The results showed that extracts from P. guajava leaves depress myocardial inotropism.
Resumo:
Several studies have demonstrated the involvement of the central nucleus of the amygdala (CEA) in the modulation of defensive behavior and in antinociceptive regulation. In a previous study, we demonstrated the existence of a cholinergic-opioidergic interaction in the CEA, modulating the defensive response of tonic immobility in guinea pigs. In the present study, we investigated a similar interaction in the CEA, but now involved in the regulation of the nociceptive response. Microinjection of carbachol (2.7 nmol) and morphine (2.2 nmol) into the CEA promoted antinociception up to 45 min after microinjection in guinea pigs as determined by a decrease in the vocalization index in the vocalization test. This test consists of the application of a peripheral noxious stimulus (electric shock into the subcutaneous region of the thigh) that provokes the emission of a vocalization response by the animal. Furthermore, the present results demonstrated that the antinociceptive effect of carbachol (2.7 nmol; N = 10) was blocked by previous administration of atropine (0.7 nmol; N = 7) or naloxone (1.3 nmol; N = 7) into the same site. In addition, the decrease in the vocalization index induced by the microinjection of morphine (2.2 nmol; N = 9) into the CEA was prevented by pretreatment with naloxone (1.3 nmol; N = 11). All sites of injection were confirmed by histology. These results indicate the involvement of the cholinergic and opioidergic systems of the CEA in the modulation of antinociception in guinea pigs. In addition, the present study suggests that cholinergic transmission may activate the release of endorphins/enkephalins from interneurons of the CEA, resulting in antinociception.
Resumo:
The objective of the present investigation was to determine the contractile effect of crude and acetone leaf extracts of Citrus sinensis (L.) Osb. on mammalian myocardium. Crude leaf extracts have been used in folk medicine to treat neurological disorders. Some flavonoids isolated from this plant presented a positive inotropic effect on myocardium. This motivated us to test the extracts on the atria of guinea pigs of both sexes (300-500 g) and surprisingly we observed inotropic depression instead of an increase in force. The maximum effect of the crude extract was 79.4 ± 8.1% of the control force amplitude (N = 5 hearts, 10 trials, 27 ± 0.1ºC, stimulus: 2 Hz, 400 V, 0.5 ms). The EC50 for crude, ethanol, acetic, aqueous, and acetone extracts was 300, 300, 600, 1000, and 140 µg/ml, respectively, with a Hill constant of 1.8, 2.0, 2.5, 2.0, and 1.4, respectively. Blockade of cholinergic, beta-adrenergic, or opioid membrane receptors with 1.5 µM atropine sulfate, 1 µM propranolol, and 10 µM naloxone, respectively, did not change the effect of the crude extract. The acetone extract abolished the Bowditch positive staircase phenomenon (N = 5 hearts, 10 trials, 27 ± 0.1ºC), suggesting a possible reduction of the calcium inward current, and also promoted the so-called Woodworth phenomenon. The effect was concentration-dependent and indicated the existence of another inhibitory contractile mechanism such as the simultaneous activation of some of the membrane potassium channels reducing the myocardial action potential duration and further decreasing the cellular calcium entry.
Resumo:
It has been reported that star fruit can lead to a fatal outcome in uremic patients. The intoxication syndrome consists of hiccups, mental confusion, dizziness, and vomiting. On the other hand, folk medicine uses teas and infusions of carambola leaves to treat headache, vomiting, cough, insomnia, and diabetes. This motivated us to determine if Averrhoa carambola can act on the contractility and automaticity of the guinea pig heart. We measured the atrial isometric force in stimulated left atria and determined the chronotropic changes in spontaneously beating right atria. The carambola leaf extracts (1.5 mg/ml) abolished the contractile force in a concentration-dependent manner. Among the crude, methanolic, ethanolic, aqueous, and acetic extracts, the aqueous one was the most potent (EC50 = 520 ± 94 µg/ml; flavonoids and tannins are the main constituents; Na+ and K+ contents in 1.0 mg/ml of aqueous extract were 0.12 ± 0.016 and 1.19 ± 0.15 mM, respectively). The aqueous extract abolished the positive Bowditch staircase phenomenon and reduced the inotropic response to CaCl2 (0.17-8.22 mM), events that are dependent on the cellular Ca2+ inward current. The adrenergic, muscarinic or opioid membrane receptors do not seem to participate in the mechanism of action of the cardioactive substance(s). In spontaneously beating atria, the aqueous extract promoted a negative chronotropic effect that was antagonized by 0.1 µM isoproterenol bitartrate. With this agonist, the EC50 of the aqueous extract increased from 133 ± 58 to 650 ± 100 µg/ml. These data regarding the effect of A. carambola on guinea pig atrial contractility and automaticity indicate an L-type Ca2+ channel blockade.
Resumo:
Two lots of 20 young male guinea pigs were inoculated subcutaneously in the tarsi with 10 (elevated to fourth potency) amastigotes of Leishmania braziliensis or L. b. guyanensis to study the susceptibility of this Neotropical hystricomorph rodent the autochthonous parasites. Almost 50% of the animals showed lesions in the inoculation site and had parazitations that were infective to hamsters, as shown by inoculating homogenates of the dermal lesion, of the spleen, of the liver, and of the nasal mucosa into hamsters at 20, 40, 60 and 120 days after inoculation of the guinea pig. Smears of the above organs showed the presence of amastigotes. Parasites inoculated into the tarsi were detected early in the skin, spleen, and liver of the guinea pig host. Blood cultures made by cardiopuncture on sacrifice of the guinea pigs were uniformly negative. The nasal mucosa of nearly all animals positive in the skin or viscera was invaded early by the parasites, although with grater frequency between 60 and 120 days post-inoculation. The use of this model for the study of mucocutaneous parasitism by L. brasiliensis is discussed, together with the phenomena of parasitism at a distance from the inoculation site, the temperature of the body regions affected, and the possible genetic influence on susceptibility of the guinea pig to L. brasiliensis.