97 resultados para Gram-negative anaerobic bacteria
em Scielo Saúde Pública - SP
Resumo:
The epidemiology of bacteremia developing during neutropenia has changed in the past decade, with the re-emergence of Gram-negative (GN) bacteria and the development of multidrug resistance (MDR) among GN bacteria. We conducted a case-control study in order to identify factors associated with bacteremia due to multidrug-resistant Gram-negative (MDRGN) isolates in hematopoietic stem cell transplant recipients. Ten patients with MDRGN bacteremia were compared with 44 patients with GN bacteremia without MDR. Bacteremia due to Burkholderia or Stenotrophomonas sp was excluded from analysis (3 cases), because the possibility of intrinsical resistance. Infection due to MDRGN bacteria occurred in 2.9% of 342 hematopoietic stem cell transplant recipients. Klebsiella pneumoniae was the most frequent MDRGN (4 isolates), followed by Pseudomonas aeruginosa (3 isolates). Among non-MDRGN, P. aeruginosa was the most frequent agent (34%), followed by Escherichia coli (30%). The development of GN bacteremia during the empirical treatment of febrile neutropenia (breakthrough bacteremia) was associated with MDR (P < 0.001, odds ratio = 32, 95% confidence interval = 5_190) by multivariate analysis. Bacteremia due to MDRGN bacteria was associated with a higher death rate by univariate analysis (40 vs 9%; P = 0.03). We were unable to identify risk factors on admission or at the time of the first fever, but the occurrence of breakthrough bacteremia was strongly associated with MDRGN bacteria. An immediate change in the antibiotic regimen in such circumstances may improve the prognosis of these patients.
Resumo:
Antibacterial effects of aqueous and ethanolic extracts of seeds of moringa (Moringa oleifera) and pods of soursop (Annona muricata) in the concentration of 1:5 and 1:10 in volumes 50, 100, 150 and 200 µL were examined against Staphylococcus aureus, Vibrio cholerae, Escherichia coli (isolated from the organism and the aquatic environment) and Salmonella Enteritidis. Antibacterial activity (inhibition halo > 13 mm) against S. aureus, V. cholerae and E. coli isolated from the whiteleg shrimp, Litopenaeus vannmaei, was detected in aqueous and ethanolic extracts of moringa. E. coli isolated from tilapiafish, Oreochromis niloticus, was sensitive to the ethanolic extract of moringa. The aqueous extracts of soursop showed an antibacterial effect against S. aureus and V. cholerae, but the antibacterial activity by the ethanol extracts of this plant was not demonstrated.
Resumo:
ABSTRACTINTRODUCTION: Monte Carlo simulations have been used for selecting optimal antibiotic regimens for treatment of bacterial infections. The aim of this study was to assess the pharmacokinetic and pharmacodynamic target attainment of intravenous β-lactam regimens commonly used to treat bloodstream infections (BSIs) caused by Gram-negative rod-shaped organisms in a Brazilian teaching hospital.METHODS: In total, 5,000 patients were included in the Monte Carlo simulations of distinct antimicrobial regimens to estimate the likelihood of achieving free drug concentrations above the minimum inhibitory concentration (MIC; fT > MIC) for the requisite periods to clear distinct target organisms. Microbiological data were obtained from blood culture isolates harvested in our hospital from 2008 to 2010.RESULTS: In total, 614 bacterial isolates, including Escherichia coli, Enterobacterspp., Klebsiella pneumoniae, Acinetobacter baumannii, and Pseudomonas aeruginosa, were analyzed Piperacillin/tazobactam failed to achieve a cumulative fraction of response (CFR) > 90% for any of the isolates. While standard dosing (short infusion) of β-lactams achieved target attainment for BSIs caused by E. coliand Enterobacterspp., pharmacodynamic target attainment against K. pneumoniaeisolates was only achieved with ceftazidime and meropenem (prolonged infusion). Lastly, only prolonged infusion of high-dose meropenem approached an ideal CFR against P. aeruginosa; however, no antimicrobial regimen achieved an ideal CFR against A. baumannii.CONCLUSIONS:These data reinforce the use of prolonged infusions of high-dose β-lactam antimicrobials as a reasonable strategy for the treatment of BSIs caused by multidrug resistant Gram-negative bacteria in Brazil.
Resumo:
Animals (122 mice) were infected each with eighty cercariae of S. mansoni and subsequently challenged intravenously eight weeks later with the following gram-negative organisms. S. typhi, E. coli, Klebsiella-enterobacter species, Proteus mirabilis and Pseudomonas aeruginosa. Enumeration of bacteria in the liver, spleen and blood and S. mansoni from the portal sistem was performed from one to four weeks later in infected animals. A significant difference between infection produced by S. typhi and other gram negative organisms was observed: S. typhi persisted longer in the spleen and liver and could be recovered from S. mansoni worms up to three weeks following bacterial infection. Other gram negative bacteria disappeared from S. mansoni worms after two weeks of initial challenge. Additional animals (51 mice) infected with S. mansoni were given S. typhi, E. coli or sterile saline. After two weeks, animals were sacrificed and the recovery rate of worms from the portal system, and the mesenteric and hepatic oogram were determined. in animals infected with E. coli a significant decrease in the number of worms was observed compared to the saline control group; thirty worms were recovered in the control group compared to two worms in e. coli infected animals. In addition, the patterns of oviposition was significantly different in these latter animals suggesting complete inhibition of this process. Following S. typhi infection the difference in recovery of worms and pattern of oviposition was minimal. These findings suggest a difference in the interaction of various gram negative bacteria and S. mansoni and are consistent with the clinical observation of prolonged salmonella bacteremia in patients with schistosomiasis.
Resumo:
Multi-resistant gram-negative rods are important pathogens in intensive care units (ICU), cause high rates of mortality, and need infection control measures to avoid spread to another patients. This study was undertaken prospectively with all of the patients hospitalized at ICU, Anesthesiology of the Hospital São Paulo, using the ICU component of the National Nosocomial Infection Surveillance System (NNIS) methodology, between March 1, 1997 and June 30, 1998. Hospital infections occurring during the first three months after the establishment of prevention and control measures (3/1/97 to 5/31/97) were compared to those of the last three months (3/1/98 to 5/31/98). In this period, 933 NNIS patients were studied, with 139 during the first period and 211 in the second period. The overall rates of infection by multi-resistant microorganisms in the first and second periods were, respectively, urinary tract infection: 3.28/1000 patients/day; 2.5/1000 patients/day; pneumonia: 2.10/1000 patients/day; 5.0/1000 patients/day; bloodstream infection: 1.09/1000 patients/day; 2.5/1000 patients/day. A comparison between overall infection rates of both periods (Wilcoxon test) showed no statistical significance (p = 0.067). The use of intervention measures effectively decreased the hospital bloodstream infection rate (p < 0.001), which shows that control measures in ICU can contribute to preventing hospital infections.
Resumo:
Mosquito control with biological insecticides, such as Bacillus sp. toxins, has been used widely in many countries. However, rapid sedimentation away from the mosquito larvae feeding zone causes a low residual effect. In order to overcome this problem, it has been proposed to clone the Bacillus toxin genes in aquatic bacteria which are able to live in the upper part of the water column. Two strains of Asticcacaulis excentricus were chosen to introduce the B. sphaericus binary toxin gene and B. thuringiensis subsp. medellin cry11Bb gene cloned in suitable vectors. In feeding experiments with these aquatic bacteria, it was shown that Culex quinquefasciatus, Aedes aegypti, and Anopheles albimanus larvae were able to survive on a diet based on this wild bacterium. A. excentricus recombinant strains were able to express both genes, but the recombinant strain expressing the B. sphaericus binary toxin was toxic to mosquito larvae. Crude protease A. excentricus extracts did not degrade the Cry11Bb toxin. The flotability studies indicated that the recombinant A. excentricus strains remained in the upper part of the water column longer than the wild type Bacillus strains.
Resumo:
The antimicrobial susceptibility of 176 unusual non-fermentative gram-negative bacilli (NF-GNB) collected from Latin America region through the SENTRY Program between 1997 and 2002 was evaluated by broth microdilution according to the National Committee for Clinical Laboratory Standards (NCCLS) recommendations. Nearly 74% of the NF-BGN belonged to the following genera/species: Burkholderia spp. (83), Achromobacter spp. (25), Ralstonia pickettii (16), Alcaligenes spp. (12), and Cryseobacterium spp. (12). Generally, trimethoprim/sulfamethoxazole (MIC50, < 0.5 µg/ml) was the most potent drug followed by levofloxacin (MIC50, 0.5 µg/ml), and gatifloxacin (MIC50, 1 µg/ml). The highest susceptibility rates were observed for levofloxacin (78.3%), gatifloxacin (75.6%), and meropenem (72.6%). Ceftazidime (MIC50, 4 µg/ml; 83.1% susceptible) was the most active beta-lactam against B. cepacia. Against Achromobacter spp. isolates, meropenem (MIC50, 0.25 µg/ml; 88% susceptible) was more active than imipenem (MIC50, 2 µg/ml). Cefepime (MIC50, 2 µg/ml; 81.3% susceptible), and imipenem (MIC50, 2 µg/ml; 81.3% susceptible) were more active than ceftazidime (MIC50, >16 µg/ml; 18.8% susceptible) and meropenem (MIC50, 8 µg/ml; 50% susceptible) against Ralstonia pickettii. Since selection of the most appropriate antimicrobial agents for testing and reporting has not been established by the NCCLS for many of NF-GNB species, results from large multicenter studies may help to guide the best empiric therapy.
Resumo:
Shigella spp are Gram-negative, anaerobic facultative, non-motile, and non-sporulated bacilli of the Enterobacteriaceae family responsible for "Shigellosis" or bacillary dysentery, an important cause of worldwide morbidity and mortality. However, despite this, there are very few epidemiological studies about this bacterium in Brazil. We studied the antibiotic resistance profiles and the clonal structure of 60 Shigella strains (30 S. flexneri and 30 S. sonnei) isolated from shigellosis cases in different cities within the metropolitan area of Campinas, State of São Paulo, Brazil. We used the following well-characterized molecular techniques: enterobacterial repetitive intergenic consensus, repetitive extragenic palindromic, and double-repetitive element-polymerase chain reaction to characterize the bacteria. Also, the antibiotic resistance of the strains was determined by the diffusion disk method. Many strains of S. flexneri and S. sonnei were found to be multi-resistant. S. flexneri strains were resistant to ampicillin in 83.3% of cases, chloramphenicol in 70.0%, streptomycin in 86.7%, sulfamethoxazole in 80.0%, and tetracycline in 80.0%, while a smaller number of strains were resistant to cephalothin (3.3%) and sulfazotrim (10.0%). S. sonnei strains were mainly resistant to sulfamethoxazole (100.0%) and tetracycline (96.7%) and, to a lesser extent, to ampicillin (6.7%) and streptomycin (26.7%). Polymerase chain reaction-based typing supported the existence of specific clones responsible for the shigellosis cases in the different cities and there was evidence of transmission between cities. This clonal structure would probably be the result of selection for virulence and resistance phenotypes. These data indicate that the human sanitary conditions of the cities investigated should be improved.
Resumo:
Actinomycosis is a rare, chronic, suppurative, granulomatous infection caused by a group of gram-positive anaerobic bacteria belonging to the natural flora of the oral cavity and gastrointestinal and urogenital tracts. It may involve several organs. This case study refers to pulmonary actinomycosis with chest wall involvement and cord compression in a 29-year-old male who presented with fever, cough, hemoptysis, neck pain, and paresis and plegia of the lower limbs of 5-month duration.
Resumo:
Two bacterial strains that amplified part of the nifH gene, RP1p and RP2p, belonging to the genus Enterobacter and Serratia, were isolated from the rhizoplane of Lupinus albescens. These bacteria are Gram-negative, rod-shaped, motile, facultative anaerobic, and fast-growing; the colonies reach diameters of 3-4 mm within 24 h of incubation at 28 ºC. The bacteria were also able to grow at temperatures as high as 40 ºC, in the presence of high (2-3 % w/v) NaCl concentrations and pH 4 -10. Strain RP1p was able to utilize 10 of 14 C sources, while RP2p utilized nine. The isolates produced siderophores and indolic compounds, but none of them was able to solubilize phosphate. Inoculation of L. albescens with RP1p and RP2p strains resulted in a significant increase in plant dry matter, indicating the plant-growth-promoting abilities of these bacteria.
Resumo:
Baccharis trimera (Less.) (Asteraceae), popularly know as "carqueja", is a species commonly used in folk medicine for the treatment or prevention of diseases. In this context, the purpose of this work was to study the antibacterial activity of crude hydroalcoholic extract from Baccharis trimera against Gram-positive bacterial strains (Staphylococcus aureus ATCC 29213, Staphylococcus saprophyticus ATCC 15305, Staphylococcus epidermidis ATCC 12228, Enterococcus faecalis ATCC 19433) and Gram-negative bacteria (Escherichia coli EHEC ATCC 43895, Pseudomonas aeruginosa ATCC 27853, Klebsiella pneumoniae ATCC 27736, Salmonella typhi ATCC 19430) of clinical interest. Antibacterial susceptibility was evaluated by broth microdilution assay following the CLSI (formerly the NCCLS) guidelines. The extract from B. trimera showed antibacterial activity against Gram-positive bacteria and the most interesting result was obtained against S. epidermidis that presented Minimal Inhibitory Concentration of 250μg/mL. These results indicate that B. trimera have bacterisostatic potential against Gram-positive bacterial strains of medical interest and could serve as a base for further studies on the use of isolated compounds from this species as future antimicrobials.
Resumo:
INTRODUCTION : Antimicrobial resistance is an increasing threat in hospitalized patients, and inappropriate empirical antimicrobial therapy is known to adversely affect outcomes in ventilator-associated pneumonia (VAP). The aim of this study was to evaluate antimicrobial usage, incidence, etiology, and antimicrobial resistance trends for prominent nosocomial pathogens causing ventilator-associated pneumonia in a clinical-surgical intensive care unit (ICU). METHODS : Gram-negative bacilli and Staphylococcus aureus causing VAP, as well as their antimicrobial resistance patterns and data on consumption (defined daily dose [DDD] per 1,000 patient days) of glycopeptides, extended-spectrum cephalosporins, and carbapenems in the unit were evaluated in two different periods (A and B). RESULTS: Antimicrobial use was high, mainly of broad-spectrum cephalosporins, with a significant increase in the consumption of glycopeptides (p < 0.0001) and carbapenems (p < 0.007) in period B. For Acinetobacter baumannii and members of the Enterobacteriaceae family, 5.27- and 3.06-fold increases in VAPs, respectively, were noted, and a significant increase in resistance rates was found for imipenem-resistant A. baumannii (p = 0.003) and third-generation cephalosporins-resistant Enterobacteriaceae (p = 0.01) isolates in this same period. CONCLUSIONS: Our results suggest that there is a link between antibiotics usage at institutional levels and resistant bacteria. The use of carbapenems was related to the high rate of resistance in A. baumannii and therefore a high consumption of imipenem/meropenem could play a major role in selective pressure exerted by antibiotics in A. baumannii strains.
Resumo:
IntroductionInsects have been described as mechanical vectors of nosocomial infections.MethodsNon-biting flying insects were collected inside a pediatric ward and neonatal-intensive care unit (ICU) of a Brazilian tertiary hospital.ResultsMost (86.4%) of them were found to carry one or more species of bacteria on their external surfaces. The bacteria isolated were Gram-positive bacilli (68.2%) or cocci (40.9%), and Gram-negative bacilli (18.2%).ConclusionsInsects collected inside a hospital were carrying pathogenic bacteria; therefore, one must consider the possibility they may act as mechanical vectors of infections, in especially for debilitated or immune-compromised patients in the hospital environments where the insects were collected.
Resumo:
A selective and differencial medium was developed for the isolation of Acinetobacter genus bacteria. This Acinobacter Agar Medium (p.H + 7.4) contains in grams per litre: thiotone, 10; yeast extract, 3; naC1, 5; saccharose, 10; mannitol, 10; sodium citrate, 0.5; sodium desoxycholate, 0.1; crystal violet, 0.00025; phenol red, 0.04 and agar-agar 15. This medium has the advantage of inhibiting the growth of cocci and Gram-positive bacilli, by the use of sodium citrate and sodium desoxycholate associated with the crystal violet; and of differentiating the Gram-negative bacilli from the Enterobacteriaceae, through the fermentative activity upon the saccharose and/or mannitol, contrasting with the complete inactivity of the Acinetobacter genus bacteria over those substances.
Resumo:
The sensitivity of two Gram positive (Staphylococcus aureus and Bacillus subtilis) and two Gram negative (Escherichia coli and Pseudomonas aeruginosa) pathogenic multi-drug resistant bacteria was tested against the crude extracts (cold aqueous, hot aqueous, and methanol extracts) of leaves and seeds of Argemone mexicana L. (Papaveraceae) by agar well diffusion method. Though all the extracts were found effective, yet the methanol extract showed maximum inhibition against the test microorganisms followed by hot aqueous extract and cold aqueous extract.