45 resultados para Geostatistics modeling techniques
em Scielo Saúde Pública - SP
Resumo:
The great expansion in the number of genome sequencing projects has revealed the importance of computational methods to speed up the characterization of unknown genes. These studies have been improved by the use of three dimensional information from the predicted proteins generated by molecular modeling techniques. In this work, we disclose the structure-function relationship of a gene product from Leishmania amazonensis by applying molecular modeling and bioinformatics techniques. The analyzed sequence encodes a 159 aminoacids polypeptide (estimated 18 kDa) and was denoted LaPABP for its high homology with poly-A binding proteins from trypanosomatids. The domain structure, clustering analysis and a three dimensional model of LaPABP, basically obtained by homology modeling on the structure of the human poly-A binding protein, are described. Based on the analysis of the electrostatic potential mapped on the model's surface and conservation of intramolecular contacts responsible for folding stabilization we hypothesize that this protein may have less avidity to RNA than it's L. major counterpart but still account for a significant functional activity in the parasite. The model obtained will help in the design of mutagenesis experiments aimed to elucidate the mechanism of gene expression in trypanosomatids and serve as a starting point for its exploration as a potential source of targets for a rational chemotherapy.
Resumo:
Understanding the different background landscapes in which malaria transmission occurs is fundamental to understanding malaria epidemiology and to designing effective local malaria control programs. Geology, geomorphology, vegetation, climate, land use, and anopheline distribution were used as a basis for an ecological classification of the state of Roraima, Brazil, in the northern Amazon Basin, focused on the natural history of malaria and transmission. We used unsupervised maximum likelihood classification, principal components analysis, and weighted overlay with equal contribution analyses to fine-scale thematic maps that resulted in clustered regions. We used ecological niche modeling techniques to develop a fine-scale picture of malaria vector distributions in the state. Eight ecoregions were identified and malaria-related aspects are discussed based on this classification, including 5 types of dense tropical rain forest and 3 types of savannah. Ecoregions formed by dense tropical rain forest were named as montane (ecoregion I), submontane (II), plateau (III), lowland (IV), and alluvial (V). Ecoregions formed by savannah were divided into steppe (VI, campos de Roraima), savannah (VII, cerrado), and wetland (VIII, campinarana). Such ecoregional mappings are important tools in integrated malaria control programs that aim to identify specific characteristics of malaria transmission, classify transmission risk, and define priority areas and appropriate interventions. For some areas, extension of these approaches to still-finer resolutions will provide an improved picture of malaria transmission patterns.
Resumo:
In general, molecular modeling techniques applied in medicinal chemistry have been static and drug based. However the active site geometry and the intrinsic flexibility of both receptor and ligand are fundamental properties for molecular recognition and drug action. As a consequence, the use of dynamic models to describe the ligand-receptor complex is becoming a more common procedure. In this work we discuss the relevance of considering the receptor structure in medicinal chemistry studies as well as the flexibility of the ligand-receptor complex.
Resumo:
The structural modeling of spatial dependence, using a geostatistical approach, is an indispensable tool to determine parameters that define this structure, applied on interpolation of values at unsampled points by kriging techniques. However, the estimation of parameters can be greatly affected by the presence of atypical observations in sampled data. The purpose of this study was to use diagnostic techniques in Gaussian spatial linear models in geostatistics to evaluate the sensitivity of maximum likelihood and restrict maximum likelihood estimators to small perturbations in these data. For this purpose, studies with simulated and experimental data were conducted. Results with simulated data showed that the diagnostic techniques were efficient to identify the perturbation in data. The results with real data indicated that atypical values among the sampled data may have a strong influence on thematic maps, thus changing the spatial dependence structure. The application of diagnostic techniques should be part of any geostatistical analysis, to ensure a better quality of the information from thematic maps.
Resumo:
OBJECTIVE To analyze the association between concentrations of air pollutants and admissions for respiratory causes in children. METHODS Ecological time series study. Daily figures for hospital admissions of children aged < 6, and daily concentrations of air pollutants (PM10, SO2, NO2, O3 and CO) were analyzed in the Região da Grande Vitória, ES, Southeastern Brazil, from January 2005 to December 2010. For statistical analysis, two techniques were combined: Poisson regression with generalized additive models and principal model component analysis. Those analysis techniques complemented each other and provided more significant estimates in the estimation of relative risk. The models were adjusted for temporal trend, seasonality, day of the week, meteorological factors and autocorrelation. In the final adjustment of the model, it was necessary to include models of the Autoregressive Moving Average Models (p, q) type in the residuals in order to eliminate the autocorrelation structures present in the components. RESULTS For every 10:49 μg/m3 increase (interquartile range) in levels of the pollutant PM10 there was a 3.0% increase in the relative risk estimated using the generalized additive model analysis of main components-seasonal autoregressive – while in the usual generalized additive model, the estimate was 2.0%. CONCLUSIONS Compared to the usual generalized additive model, in general, the proposed aspect of generalized additive model − principal component analysis, showed better results in estimating relative risk and quality of fit.
Resumo:
ABSTRACT The spatial distribution of forest biomass in the Amazon is heterogeneous with a temporal and spatial variation, especially in relation to the different vegetation types of this biome. Biomass estimated in this region varies significantly depending on the applied approach and the data set used for modeling it. In this context, this study aimed to evaluate three different geostatistical techniques to estimate the spatial distribution of aboveground biomass (AGB). The selected techniques were: 1) ordinary least-squares regression (OLS), 2) geographically weighted regression (GWR) and, 3) geographically weighted regression - kriging (GWR-K). These techniques were applied to the same field dataset, using the same environmental variables derived from cartographic information and high-resolution remote sensing data (RapidEye). This study was developed in the Amazon rainforest from Sucumbíos - Ecuador. The results of this study showed that the GWR-K, a hybrid technique, provided statistically satisfactory estimates with the lowest prediction error compared to the other two techniques. Furthermore, we observed that 75% of the AGB was explained by the combination of remote sensing data and environmental variables, where the forest types are the most important variable for estimating AGB. It should be noted that while the use of high-resolution images significantly improves the estimation of the spatial distribution of AGB, the processing of this information requires high computational demand.
Resumo:
Techniques of evaluation of risks coming from inherent uncertainties to the agricultural activity should accompany planning studies. The risk analysis should be carried out by risk simulation using techniques as the Monte Carlo method. This study was carried out to develop a computer program so-called P-RISCO for the application of risky simulations on linear programming models, to apply to a case study, as well to test the results comparatively to the @RISK program. In the risk analysis it was observed that the average of the output variable total net present value, U, was considerably lower than the maximum U value obtained from the linear programming model. It was also verified that the enterprise will be front to expressive risk of shortage of water in the month of April, what doesn't happen for the cropping pattern obtained by the minimization of the irrigation requirement in the months of April in the four years. The scenario analysis indicated that the sale price of the passion fruit crop exercises expressive influence on the financial performance of the enterprise. In the comparative analysis it was verified the equivalence of P-RISCO and @RISK programs in the execution of the risk simulation for the considered scenario.
Resumo:
This work describes techniques for modeling, optimizing and simulating calibration processes of robots using off-line programming. The identification of geometric parameters of the nominal kinematic model is optimized using techniques of numerical optimization of the mathematical model. The simulation of the actual robot and the measurement system is achieved by introducing random errors representing their physical behavior and its statistical repeatability. An evaluation of the corrected nominal kinematic model brings about a clear perception of the influence of distinct variables involved in the process for a suitable planning, and indicates a considerable accuracy improvement when the optimized model is compared to the non-optimized one.
Resumo:
The aim of this study was to identify and map the weed population in a no-tillage area. Geostatistical techniques were used in the mapping in order to assess this information as a tool for the localized application of herbicides. The area of study is 58.08 hectares wide and was sampled in a fixed square grid (which point spaced 50 m, 232 points) using a GPS receiver. In each point the weeds species and population were analyzed in a square with a 0.25 m2 fixed area. The species Ipomoea grandifolia, Gnaphalium spicatum, Richardia spp. and Emilia sonchifolia have presented no spatial dependence. However, the species Conyza spp., C. echinatus and E. indica have shown a spatial correlation. Among the models tested, the spherical model has shown had a better fit for Conyza spp. and Eleusine indica and the Gaussian model for Cenchrus echinatus. The three species have a clumped spatial distribution. The mapping of weeds can be a tool for localized control, making herbicide use more rational, effective and economical.
Resumo:
Forest cover of the Maringá municipality, located in northern Parana State, was mapped in this study. Mapping was carried out by using high-resolution HRC sensor imagery and medium resolution CCD sensor imagery from the CBERS satellite. Images were georeferenced and forest vegetation patches (TOFs - trees outside forests) were classified using two methods of digital classification: reflectance-based or the digital number of each pixel, and object-oriented. The areas of each polygon were calculated, which allowed each polygon to be segregated into size classes. Thematic maps were built from the resulting polygon size classes and summary statistics generated from each size class for each area. It was found that most forest fragments in Maringá were smaller than 500 m². There was also a difference of 58.44% in the amount of vegetation between the high-resolution imagery and medium resolution imagery due to the distinct spatial resolution of the sensors. It was concluded that high-resolution geotechnology is essential to provide reliable information on urban greens and forest cover under highly human-perturbed landscapes.
Resumo:
OBJECTIVE: To identify clusters of the major occurrences of leprosy and their associated socioeconomic and demographic factors. METHODS: Cases of leprosy that occurred between 1998 and 2007 in São José do Rio Preto (southeastern Brazil) were geocodified and the incidence rates were calculated by census tract. A socioeconomic classification score was obtained using principal component analysis of socioeconomic variables. Thematic maps to visualize the spatial distribution of the incidence of leprosy with respect to socioeconomic levels and demographic density were constructed using geostatistics. RESULTS: While the incidence rate for the entire city was 10.4 cases per 100,000 inhabitants annually between 1998 and 2007, the incidence rates of individual census tracts were heterogeneous, with values that ranged from 0 to 26.9 cases per 100,000 inhabitants per year. Areas with a high leprosy incidence were associated with lower socioeconomic levels. There were identified clusters of leprosy cases, however there was no association between disease incidence and demographic density. There was a disparity between the places where the majority of ill people lived and the location of healthcare services. CONCLUSIONS: The spatial analysis techniques utilized identified the poorer neighborhoods of the city as the areas with the highest risk for the disease. These data show that health departments must prioritize politico-administrative policies to minimize the effects of social inequality and improve the standards of living, hygiene, and education of the population in order to reduce the incidence of leprosy.
Resumo:
In the present study three techniques for obtaining outer membrane enriched fractions from Yersinia pestis were evaluated. The techniques analysed were: differential solubilization of the cytoplasmic membrane with Sarkosyl or Triton X-100, and centrifugation in sucrose density gradients. The sodium dodecyl-sulfate polyacrylamide gel electrophoresis (SDS-PAGE) of outer membrane isolated by the different methods resulted in similar protein patterns. The measurement of NADH-dehydrogenase and succinate dehydrogenase (inner membrane enzymes) indicated that the outer membrane preparations obtained by the three methods were pure enough for analytical studies. In addition, preliminary evidences on the potential use of outer membrane proteins for the identification of geographic variants of Y. pestis wild isolates are presented.
Resumo:
Hydatid disease in tropical areas poses a serious diagnostic problem due to the high frequence of cross-reactivity with other endemic helminthic infections. The enzyme-linked-immunosorbent assay (ELISA) and the double diffusion arc 5 showed respectively a sensitivity of 73% and 57% and a specificity of 84-95% and 100%. However, the specificity of ELISA was greatly increased by using ovine serum and phosphorylcholine in the diluent buffer. The hydatic antigen obtained from ovine cyst fluid showed three main protein bands of 64,58 and 30 KDa using SDS PAGE and immunoblotting. Sera from patients with onchocerciasis, cysticercosis, toxocariasis and Strongyloides infection cross-reacted with the 64 and 58 KDa bands by immunoblotting. However, none of the analyzed sera recognized the 30 KDa band, that seems to be specific in this assay. The immunoblotting showed a sensitivity of 80% and a specificity of 100% when used to recognize the 30 KDa band.