16 resultados para Geometric effects component
em Scielo Saúde Pública - SP
Resumo:
Two complexes of Rh(I) and Pd(II) with chloride and tridecylamine ligands were obtained and characterized by Elementary Analysis and by XPS and FTIR spectroscopies. Complexes anchored on γ-Al2O3 were tested in the styrene semi-hydrogenation reaction carried out in the absence or presence of a sulfur poison. Although both low loaded catalysts were highly selective, the Pd(II) complex was three times more active than the Rh(I) complex. The rhodium complex was more sulfur resistant but less active than the palladium complex. Differences in conversion and sulfur resistance between both complexes could be related to electronic and/or geometric effects.
Resumo:
Cancer anemia is classified as an anemia of chronic diseases, although it is sometimes the first symptom of cancer. Cancer anemia includes a hemolytic component, important in the terminal stage when even transfused cells are rapidly destroyed. The presence of a chronic component and the terminal complications of the illness limit studies of the hemolytic component. A multifocal model of tumor growth was used here to simulate the terminal metastatic dissemination stage (several simultaneous inoculations of Walker 256 cells). The hemolytic component of anemia began 3-4 days after inoculation in 100% of the rats and progressed rapidly thereafter: Hb levels dropped from 14.9 ± 0.02 to 8.7 ± 0.06 from days 7 to 11 (~5 times the physiologically normal rate in rats) in the absence of bleeding. The development of anemia was correlated (r2 = 0.86) with the development of other systemic effects such as anorexia. There was a significant decrease in the osmotic fragility of circulating erythrocytes: the NaCl concentration causing 50% lysis was reduced from 4.52 ± 0.06 to 4.10 ± 0.01 (P<0.01) on day 7, indicating a reduction in erythrocyte volume. However, with mild metabolic stress (4-h incubation at 37oC), the erythrocytes showed a greater increase in osmotic fragility than the controls, suggesting marked alteration of erythrocyte homeostasis. These effects may be due to primary plasma membrane alterations (transport and/or permeability) and/or may be secondary to metabolic changes. This multifocal model is adequate for studying the hemolytic component of cancer anemia since it is rapid, highly reproducible and causes minimal animal suffering.
Resumo:
Abstract: There is a need for heat tolerant wheat cultivars adapted to the expansion of cultivation areas in warmer regions due to the high demand of this cereal for human consumption. The objective of this study was to evaluate the effect of high temperatures on grain yield and yield components of wheat and characterize heat tolerant wheat genotypes at different development stages. The genotypes were evaluated in the field with and without heat stress. High temperatures reduced the number of spikelets per spike (21%), number of grains per spike (39%), number of grains per spikelet (23%), 1000-grain weight (27%) and grain yield (79%). Cultivars MGS 1 Aliança, Embrapa 42, IAC 24-Tucuruí and IAC 364-Tucuruí III are the most tolerant to heat stress between the stages double ridge and terminal spikelet; MGS 1 Aliança, BRS 264, IAC 24-Tucuruí, IAC 364-Tucuruí III and VI 98053, between meiosis and anthesis; and BRS 254, IAC-24-Tucuruí, IAC-364-Tucuruí III and VI 98053, between anthesis and physiological maturity. High temperatures reduce grain yield and yield components. The number of grains per spike is the most reduced component under heat stress. The genotypes differed in tolerance to heat stress in different developmental stages.
Resumo:
The effect of sub-lethal feeding of bait formulations containing molluscicidal component of Ferula asafoetida (ferulic acid, umbelliferone), Syzygium aromaticum (eugenol) and Carum carvi (limonene) on biochemical changes in the ovotestis of snail Lymnaea acuminata were studied. Bait formulations feeding to L. acuminata were studied in clear glass aquaria having diameter of 30 cm. Baits were prepared from different binary combinations of attractant amino acid (valine, aspartic acid, lysine and alanine 10 mM) in 100 mL of 2% agar solution + sub-lethal (20% and 60% of 24h LC50) doses of different molluscicides (ferulic acid, umbelliferone, eugenol and limonene). These baits caused maximum significant reduction in free amino acid, protein, DNA, RNA levels i.e. 41.37, 23.56, 48.36 and 14.29% of control in the ovotestis of the snail, respectively. Discontinuation of feeding after treatment of 60% of 96h LC50 of molluscicide containing bait for next 72h caused a significant recovery in free amino acid, protein, DNA and RNA levels in the ovotestis of L. acuminata.
Resumo:
The effect of sub-lethal doses (40% and 80% of LC50/24h) of plant derived molluscicides of singly, binary (1:1) and tertiary (1:1:1) combinations of the Rutin, Ellagic acid, Betulin and taraxerol with J. gossypifolia latex, leaf and stem bark powder extracts and their active component on the reproduction of freshwater snail Lymnaea acuminata have been studied. It was observed that the J. gossypifolia latex, stem bark, individual leaf and their combinations with other plant derived active molluscicidal components caused a significant reduction in fecundity, hatchability and survival of young snails. It is believed that sub-lethal exposure of these molluscicides on snail reproduction is a complex process involving more than one factor in reducing the reproductive capacity.
Resumo:
Goyazensolide, a component extracted of Eremanthus goyazensis showed a significant inhibitory effect on egg-laying of Schistosoma mansoni during in vitro cultivation of this parasite. Motility of the worms was also reduced under treatment with goyazensolide and 90% of mortality was reached with concentrations up to 4mg/ml. It has found that separated worms were more susceptible than worms pairing during drug exposition and female alone was significantly more susceptible than male worm in the same conditions of in vitro cultivation. Natural products isolated from plants represent potential sources for the identification of structures useful for the design of alternative molecules to be used as new drug substances against several infectious diseases
Resumo:
Polygonum punctatum (Polygonaceae) is an herb known in some regions of Brazil as "erva-de-bicho" and is used to treat intestinal disorders. The dichloromethane extract of the aerial parts of this plant showed strong activity in a bioautographic assay with the fungus Cladosporium sphaerospermum. The bioassay-guided chemical fractionation of this extract afforded the sesquiterpene dialdehyde polygodial as the active constituent. The presence of this compound with antibiotic, anti-inflammatory and anti-hyperalgesic properties in "erva-de-bicho" may account for the effects attributed by folk medicine to this plant species.
Resumo:
Tillage systems are a key element of the technology of crop production, both with a view to crop yield and from the perspective of soil conservation and sustainability of the production system. The aim of this paper was to evaluate the effects of five tillage systems on the physical properties of a cohesive Yellow Argisol. The experiment was installed in the field on January 21, 2011 and lasted 260 days, in an area previously used as pasture with Brachiaria grass without liming or fertilization, but irrigated by a low pressure spray system. The treatments, in five replications and in a randomized block design, consisted of: 1) disk plow (twice) + disk harrow + ridge-furrow tillage (raising a ridge along the planting row), 135 days after transplanting (DP + RID); 2) disk plow (twice) + disk harrow (DP no RID); 3) subsoiler (SB); 4) disk plow (twice) + disk harrow + scarification with three shanks along the plant row (DP + SPR); and 5) disk plow (twice) + disk harrow + scarification with three shanks in the total area (DP + STA). In all tillage systems, furrows were mechanically opened for the papaya plants. After the treatments, the mechanical resistance to penetration was determined, followed by soil moisture, mean weight diameter (MWD), geometric mean diameter (GMD), bulk density (BD), macroporosity (Ma), microporosity (Mi), and number of fruits per plant. There were differences in penetration resistance (PR) between treatments. The subsoiler was more effective to decrease RP to a distance of 0.35 m from the plants, perpendicular to the plant row. The scarifier resulted in a lower PR than DP or SB, even at the depth of 0.40 m, and it was more effective at greater distances perpendicular to the plant. All tillage systems induced a PR between 2.0 and 3.0 MPa at the depth with the highest concentration of papaya tree roots (0-0.25 m), improving the physical conditions to this depth. There was no statistical difference among the treatments for BD, Ma, Mi, MWD, and GMD at a depth of 0.20 m. The disk plow changed the physical properties of the soil most intensely to a depth of 0.20 m. The use of scarification, reduced tillage with a forest subsoiler, or ridge-furrow tillage did not improve the physical properties in the rhizosphere. Reduced tillage with a forest subsoiler resulted in a lower number of fruits per plant than all other treatments, which did not differ from each other.
Resumo:
Soils of the tropics are prone to a decrease in quality after conversion from native forest (FO) to a conventional tillage system (CT). However, the adoption of no-tillage (NT) and complex crop rotations may improve soil structural quality. Thus, the aim of this study was to evaluate the physical properties of an Oxisol under FO, CT, and three summer crop sequences in NT: continuous corn (NTcc), continuous soybean (NTcs), and a soybean/corn rotation (NTscr). Both NT and CT decreased soil organic carbon (SOC) content, SOC stock, water stable aggregates (WSA), geometric mean diameter (GMD), soil total porosity (TP), macroporosity (MA), and the least limiting water range (LLWR). However they increased soil bulk density (BD) and tensile strength (TS) of the aggregates when compared to soil under FO. Soil under NT had higher WSA, GMD, BD, TS and microporosty, but lower TP and MA than soil under CT. Soil under FO did not attain critical values for the LLWR, but the lower limit of the LLWR in soils under CT and NT was resistance to penetration (RP) for all values of BD, while the upper limit of field capacity was air-filled porosity for BD values greater than 1.46 (CT), 1.40 (NTscr), 1.42 (NTcc), and 1.41 (NTcs) kg dm-3. Soil under NTcc and NTcs decreased RP even with the increase in BD because of the formation of biopores. Furthermore, higher critical BD was verified under NTcc (1.62 kg dm-3) and NTcs (1.57 kg dm-3) compared to NTscr and CT (1.53 kg dm-3).
Resumo:
The study was done to identify the most active fungitoxic component of cinnamon bark (Cinnamomum zeylanicum) oil that can be used as a marker for standardization of cinnamon extract or oil based natural preservative of stored seeds. Aspergillus flavus and A. ruber were used as test fungi. The hexane extracted crude oil and the hydro-distilled essential oil from cinnamon bark had complete growth inhibition concentration (CGIC) of 300 and 100 µl/l, respectively. Both oils produced three fractions on preparative thin layer silica-gel chromatography plates. The fraction-2 of either oil was the largest and most active, with CGIC of 200 µl/l, but the fungitoxicity was also retained in the other two fractions. The fraction-1 and 3 of the crude oil reduced growth of both the fungal species by 65%, and those of distilled oil by 45% at 200 µl/l. The CGIC of these fractions from both the sources was above 500 µl/l. The gas chromatography and mass spectrometry (GC-MS) of the fraction-2 of the hexane extract revealed that it contained 61% cinnamaldehyde, 29% cinnamic acid, and two minor unidentified compounds in the proportion of 4% and 6%. The GC-MS of the fraction-2 of the distilled oil revealed that it contained 99.1% cinnamaldehyde and 0.9% of an unidentified compound. The CGIC of synthetic cinnamaldehyde was 300 µl/l and that of cinnamic acid above 500 µl/l. The 1:1 mixture of cinnamaldehyde and cinnamic acid had CGIC of 500 µl/l. The data revealed that cinnamaldehyde was the major fungitoxic component of hexane extract and the distilled essential oil of cinnamon bark, while other components have additive or synergistic effects on total fungitoxicity. It is suggested that the natural seed preservative based on cinnamon oil can be standardized against cinnamaldehyde.
Resumo:
The aim of this study was to investigate the effect of pre-slaughter handling on the occurrence of PSE (Pale, Soft, and Exudative) meat in swine slaughtered at a commercial slaughterhouse located in the metropolitan region of Dourados, Mato Grosso do Sul, Brazil. Based on the database (n=1,832 carcasses), it was possible to apply the integrated multivariate analysis for the purpose of identifying, among the selected variables, those of greatest relevance to this study. Results of the Principal Component Analysis showed that the first five components explained 89.28% of total variance. In the Factor Analysis, the first factor represented the thermal stress and fatiguing conditions for swine during pre-slaughter handling. In general, this study indicated the importance of the pre-slaughter handling stages, evidencing those of greatest stress and threat to animal welfare and pork quality, which are transport time, resting period, lairage time before unloading, unloading time, and ambience.
Resumo:
Accumulating evidence suggests that angiotensin-(1-7) (Ang-(1-7)) is an important component of the renin-angiotensin system and that the actions of the peptide may either contribute to or oppose those of Ang II. Ang-(1-7) can be converted directly from Ang I bypassing prerequisite formation of Ang II. Formation of Ang-(1-7) is under the control of at least three endopeptidases depending on the tissue compartment and include neprilysin, thimet oligopeptidase and prolyl oligopeptidase. Both neprilysin and thimet oligopeptidase are also involved in the metabolism of bradykinin and the atrial natriuretic peptide. Moreover, recent studies suggest that in addition to Ang I and bradykinin, Ang-(1-7) is an endogenous substrate for angiotensin converting enzyme. These enzymatic pathways may contribute to a complex relationship between the hypertensive actions of Ang II and various vasodepressor peptides from either the renin-angiotensin system or other peptide systems. Ang-(1-7) is devoid of the vasoconstrictor, central pressor, or thirst-stimulating actions associated with Ang II. In fact, new findings reveal depressor, vasodilator, and antihypertensive actions that may be more apparent in hypertensive animals or humans. Thus, Ang-(1-7) may oppose the actions of Ang II directly or as a result of increasing prostaglandins or nitric oxide. In this review, we examine the mechanisms by which Ang-(1-7) may contribute to cardiovascular regulation.
Resumo:
The possibility of the presence of inter-individual emotional differences and the memory performance of rats was examined in the elevated T-maze. Two kinds of aversively motivated behaviors, inhibitory avoidance and escape learning, were measured. Based on the number of trials to achieve a learning criterion, rats were divided into two subgroups with either low or high avoidance reactivity (LAR or HAR, respectively). Retention test avoidance latencies showed that HAR animals had better avoidance memory (Mann-Whitney rank sum test, P = 0.0035). No such differences were found for the escape component of this test. These data suggest that individual emotional differences affect inhibitory avoidance performance, which may help to explain the dispersion of the data observed in other studies using this paradigm.
Resumo:
The medial septum participates in the modulation of exploratory behavior triggered by novelty. Also, selective lesions of the cholinergic component of the septohippocampal system alter the habituation of rats to an elevated plus-maze without modifying anxiety indices. We investigated the effects of the intraseptal injection of the cholinergic immunotoxin 192 IgG-saporin (SAP) on the behavior of rats in an open-field. Thirty-nine male Wistar rats (weight: 194-230 g) were divided into three groups, non-injected controls and rats injected with either saline (0.5 µl) or SAP (237.5 ng/0.5 µl). Twelve days after surgery, the animals were placed in a square open-field (120 cm) and allowed to freely explore for 5 min. After the test, the rats were killed by decapitation and the septum, hippocampus and frontal cortex were removed and assayed for acetylcholinesterase activity. SAP increased acetylcholinesterase activity in the septum, hippocampus and frontal cortex and decreased the total distance run (9.15 ± 1.51 m) in comparison to controls (13.49 ± 0.91 m). The time spent in the center and at the periphery was not altered by SAP but the distance run was reduced during the first and second minutes (2.43 ± 0.36 and 1.75 ± 0.34 m) compared to controls (4.18 ± 0.26 and 3.14 ± 0.25 m). SAP-treated rats showed decreased but persistent exploration throughout the session. These results suggest that septohippocampal cholinergic mechanisms contribute to at least two critical processes, one related to the motivation to explore new environments and the other to the acquisition and storage of spatial information (i.e., spatial memory).
Resumo:
The cardiovascular protective actions of estrogen are partially mediated by a direct effect on the vessel wall. Estrogen is active both on vascular smooth muscle and endothelial cells where functionally competent estrogen receptors have been identified. Estrogen administration promotes vasodilation in humans and in experimental animals, in part by stimulating prostacyclin and nitric oxide synthesis, as well as by decreasing the production of vasoconstrictor agents such as cyclooxygenase-derived products, reactive oxygen species, angiotensin II, and endothelin-1. In vitro, estrogen exerts a direct inhibitory effect on smooth muscle by activating potassium efflux and by inhibiting calcium influx. In addition, estrogen inhibits vascular smooth muscle cell proliferation. In vivo, 17ß-estradiol prevents neointimal thickening after balloon injury and also ameliorates the lesions occurring in atherosclerotic conditions. As is the case for other steroids, the effect of estrogen on the vessel wall has a rapid non-genomic component involving membrane phenomena, such as alteration of membrane ionic permeability and activation of membrane-bound enzymes, as well as the classical genomic effect involving estrogen receptor activation and gene expression.