123 resultados para Genetic-analysis
em Scielo Saúde Pública - SP
Molecular Genetic Analysis of Multi-drug Resistance in Indian Isolates of Mycobacterium tuberculosis
Resumo:
A total of 116 isolates from patients attending the out-patient department at the All India Institute of Medical Sciences, New Delhi and the New Delhi Tuberculosis Centre, New Delhi, India were collected. They were analyzed for resistance to drugs prescribed in the treatment for tuberculosis. The drug resistance was initially determined by microbiological techniques. The Bactec 460TB system was employed to determine the type and level of resistance in each isolate. The isolates were further characterized at molecular level. The multi-drug loci corresponding to rpo b, gyr A, kat G were studied for mutation(s) by the polymerase chain reaction-single strand conformational polymorphism (PCR-SSCP) technique. The SSCP positive samples were sequenced to characterize the mutations in rpo b, and gyr A loci. While previously reported mutations in the gyr A and rpo b loci were found to be present, several novel mutations were also scored in the rpo b locus. Interestingly, analysis of the gyr A locus showed the presence of point mutation(s) that could not be detected by PCR-SSCP. Furthermore, rifampicin resistance was found to be an important marker for checking multi-drug resistance (MDR) in clinical isolates of Mycobacterium tuberculosis. This is the first report on molecular genetic analysis of MDR tuberculosis one from India, highlights the increasing incidence of MDR in the Indian isolates of M. tuberculosis.
Resumo:
Although Colombia presents an enormous biological diversity, few studies have been conducted on the population genetics of Trypanosoma cruzi. This study was carried out with 23 Colombian stocks of this protozoa analyzed for 13 isoenzymatic loci. The Hardy-Weinberg equilibrium, the genetic diversity and heterogeneity, the genetic relationships and the possible spatial structure of these 23 Colombian stocks of T. cruzi were estimated. The majority of results obtained are in agreement with a clonal population structure. Nevertheless, two aspects expected in a clonal structure were not discovered in the Colombian T. cruzi stocks. There was an absence of given zymodemes over-represented from a geographical point of view and the presumed temporal stabilizing selective phenomena was not observed either in the Colombian stocks sampled several times through the years of the study. Some hypotheses are discussed in order to explain the results found.
Resumo:
Domiciliated Rhodnius prolixus and sylvatic R. colombiensis were analyzed in order to confirm their genetic divergence and verify the risk that the latter represents in the domiciliation process, and to provide tools for identifying the sources of possible reinfestation by triatomines in human dwellings allowing control programs to be undertaken. Comparison of random amplified polymorphic DNA amplification patterns and cluster analysis suggests reproductive discontinuity between the two species. The calculated statistical F value of 0.24 and effective migration rate of 0.6 individuals per generation are insufficient to maintain genetic homogeneity between them and confirm the absence of present genetic flow. R. colombiensis presents higher intrapopulation variability. Polymerase chain reaction of ribosomal DNA supports these findings. The low genetic flow between the two species implies that R. colombiensis do not represent an epidemiological risk for the domiciliary transmission of Trypanosoma cruzi in the Tolima Department. The lower variability of the domiciliated R. prolixus could result in greater susceptibility to the use of pesticides in control programs.
Resumo:
Multiple locus sequence typing (MLST) was undertaken to extend the genetic characterization of 29 isolates of Bacillus cereus and Bacillus thuringiensis previously characterized in terms of presence/absence of sequences encoding virulence factors and via variable number tandem repeat (VNTR). Additional analysis involved polymerase chain reaction for the presence of sequences (be, cytK, inA, pag, lef, cya and cap), encoding putative virulence factors, not investigated in the earlier study. MLST analysis ascribed novel and unique sequence types to each of the isolates. A phylogenetic tree was constructed from a single sequence of 2,838 bp of concatenated loci sequences. The strains were not monophyletic by analysis of any specific housekeeping gene or virulence characteristic. No clear association in relation to source of isolation or to genotypic profile based on the presence or absence of putative virulence genes could be identified. Comparison of VNTR profiling with MLST data suggested a correlation between these two methods of genetic analysis. In common with the majority of previous studies, MLST was unable to provide clarification of the basis for pathogenicity among members of the B. cereus complex. Nevertheless, our application of MLST served to reinforce the notion that B. cereus and B. thuringiensis should be considered as the same species.
Resumo:
Aluminum (Al) toxicity is a major factor limiting barley growth in acid soils, and genotypes with adequate level of tolerance are needed for improving barley adaptation in Brazil. To study the inheritance of Al tolerance in Brazilian barleys, cultivars Antarctica 1, BR 1 and FM 404 were crossed to sensitive Kearney and PFC 8026, and intercrossed. Parental, F1, F2 and F6 generations were grown in nutrient solution containing 0.03, 0.05 and 0.07 mM of Al and classified for tolerance by the root tip hematoxylin staining assay. Tolerant by sensitive F2 progenies segregated three tolerant to one sensitive, fitting the 3:1 ratio expected for a single gene. The F6 populations segregated one tolerant to one sensitive also fitting a monogenic ratio. The F2 seedlings from crosses among tolerant genotypes scored the same as the parents. Since the population size used would allow detection of recombination as low as 7%, the complete absence of Al sensitive recombinants suggests that tolerance in these cultivars is most probably, controlled by the same gene. Thus, the potential for improving Al tolerance through recombination of these genotypes is very low and different gene sources should be evaluated.
Resumo:
The objective of this work was to determine the contents of methylxanthines, caffeine and theobromine, and phenolic compounds, chlorogenic and caffeic acids, in 51 mate progenies (half-sib families) and estimate the heritability of genetic parameters. Mate progenies were from five Brazilian municipalities: Pinhão, Ivaí, Barão de Cotegipe, Quedas do Iguaçu, and Cascavel. The progenies were grown in the Ivaí locality. The contents of the compounds were obtained by high performance liquid chromatography (HPLC). The estimation of genetic parameters by the restricted maximum likelihood (REML) and the prediction of genotypic values via best linear unbiased prediction (BLUP) were obtained by the Selegen - REML/BLUP software. Caffeine (0.248-1.663%) and theobromine (0.106-0.807%) contents were significantly different (p<0.05) depending on the region of origin, with high individual heritability (ĥ²>0.5). The two different progeny groups determined for chlorogenic (1.365-2.281%) and caffeic (0.027-0.037%) acid contents were not significantly different (p<0.05) depending on the locality of origin. Individual heritability values were low to medium for chlorogenic (ĥ²<0.4) and caffeic acid (ĥ²<0.3). The content of the compounds and the values of genetic parameters could support breeding programs for mate.
Resumo:
PURPOSE: To evaluate genes differentially expressed in ovaries from lean (wild type) and obese (ob/ob) female mice and cyclic AMP production in both groups.METHODS: The expression on messenger RNA levels of 84 genes concerning obesity was analyzed through the PCR array, and cyclic AMP was quantified by the enzyme immunoassay method.RESULTS: The most downregulated genes in the Obesity Group included adenylate cyclase-activating polypeptide type 1, somatostatin, apolipoprotein A4, pancreatic colipase, and interleukin-1 beta. The mean decrease in expression levels of these genes was around 96, 40, 9, 4.2 and 3.6-fold, respectively. On the other hand, the most upregulated genes in the Obesity Group were receptor (calcitonin) activity-modifying protein 3, peroxisome proliferator activated receptor alpha, calcitonin receptor, and corticotropin-releasing hormone receptor 1. The increase means in the expression levels of such genes were 2.3, 2.7, 4.8 and 6.3-fold, respectively. The ovarian cyclic AMP production was significantly higher in ob/ob female mice (2,229±52 fMol) compared to the Control Group (1,814±45 fMol).CONCLUSIONS: Obese and anovulatory female mice have reduced reproductive hormone levels and altered ovogenesis. Several genes have their expression levels altered when leptin is absent, especially adenylate cyclase-activating polypeptide type 1.
Resumo:
Group B rotaviruses (RV-B) were first identified in piglet feces, being later associated with diarrhea in humans, cattle, lambs, and rats. In human beings, the virus was only described in China, India, and Bangladesh, especially infecting adults. Only a few studies concerning molecular analysis of the RV-B NSP2 gene have been conducted, and porcine RV-B has not been characterized. In the present study, three porcine wild-type RV-B strains from piglet stool samples collected from Brazilian pig herds were used for analysis. PAGE results were inconclusive for those samples, but specific amplicons of the RV-B NSP2 gene (segment 8) were obtained in a semi-nested PCR assay. The three porcine RV-B strains showed the highest nucleotide identity with the human WH1 strain and the alignments with other published sequences resulted in three groups of strains divided according to host species. The group of human strains showed 92.4 to 99.7% nucleotide identity while the porcine strains of the Brazilian RV-B group showed 90.4 to 91.8% identity to each other. The identity of the Brazilian porcine RV-B strains with outer sequences consisting of group A and C rotaviruses was only 35.3 to 38.8%. A dendrogram was also constructed to group the strains into clusters according to host species: human, rat, and a distinct third cluster consisting exclusively of the Brazilian porcine RV-B strains. This is the first study of the porcine RV-B NSP2 gene that contributes to the partial characterization of this virus and demonstrates the relationship among RV-B strains from different host species.
Resumo:
Recent animal studies have indicated that overexpression of the elongation of long-chain fatty acids family member 6 (Elovl6) gene can cause insulin resistance and β-cell dysfunction. These are the major factors involved in the development of type 2 diabetes mellitus (T2DM). To identify the relationship between single nucleotide polymorphisms (SNP) ofELOVL6 and T2DM pathogenesis, we conducted a case-control study of 610 Han Chinese individuals (328 newly diagnosed T2DM and 282 healthy subjects). Insulin resistance and islet first-phase secretion function were evaluated by assessment of insulin resistance in a homeostasis model (HOMA-IR) and an arginine stimulation test. Three SNPs of the ELOVL6 gene were genotyped with polymerase chain reaction-restriction fragment length polymorphism, with DNA sequencing used to confirm the results. Only genotypes TT and CT of the ELOVL6 SNP rs12504538 were detected in the samples. Genotype CC was not observed. The T2DM group had a higher frequency of the C allele and the CT genotype than the control group. Subjects with the CT genotype had higher HOMA-IR values than those with the TT genotype. In addition, no statistical significance was observed between the genotype and allele frequencies of the control and T2DM groups for SNPs rs17041272 and rs6824447. The study indicated that the ELOVL6 gene polymorphism rs12504538 is associated with an increased risk of T2DM, because it causes an increase in insulin resistance.
Genetic and antigenic analysis of Babesia bigemina isolates from five geographical regions of Brazil
Resumo:
A molecular epidemiological study was performed with Babesia bigemina isolates from five geographical regions of Brazil. The genetic analysis was done with random amplification of polymorphic DNA (RAPD), repetitive extragenic palindromic elements-polymerase chain reaction (REP-PCR) and enterobacterial repetitive intergenic consensus sequences-polymerase chain reaction (ERIC-PCR) that showed genetic polymorphism between these isolates and generated fingerprinting. In RAPD, ILO872 and ILO876 primers were able to detect at least one fingerprinting for each B. bigemina isolate. The amplification of B. bigemina DNA fragments by REP-PCR and ERIC-PCR gave evidence for the presence in this haemoprotozoan of the sequences described previously in microorganisms of the bacterial kingdom. For the first time it was demonstrated that both techniques can be used for genetic analysis of a protozoan parasite, although the ERIC-PCR was more discriminatory than REP-PCR. The dendogram with similarity coefficient among isolates showed two clusters and one subcluster. The Northeastern and Mid-Western isolates showed the greatest genetic diversity, while the Southeastern and Southern isolates were the closest. The antigenic analysis was done through indirect fluorescent antibody technique and Western blotting using a panel of monoclonal antibodies directed against epitopes on the merozoite membrane surface, rhoptries and membrane of infected erythrocytes. As expected, the merozoite variable surface antigens, major surface antigen (MSA)-1 and MSA-2 showed antigenic diversity. However, B cell epitopes on rhoptries and infected erythrocytes were conserved among all isolates studied. In this study it was possible to identify variable and conserved antigens, which had already been described as potential immunogens. Considering that an attenuated Babesia clone used as immunogen selected populations capable of evading the immunity induced by this vaccine, it is necessary to evaluate more deeply the cross-protection conferred by genetically more distant Brazilian B. bigemina isolates and make an evaluation of the polymorphism degree of variable antigens such as MSA-1 and MSA-2.
Resumo:
The aim of the present study was to determine biological characteristics such as expression of fimbriae, Congo red binding, production of hemolysin and aerobactin, adhesion to HeLa and uroepithelial cells and invasion of HeLa cells by Escherichia coli isolates obtained from patients showing clinical signs of urinary tract infection (UTI). Also, the presence of genes (apa, afa, spa) for fimbria expression and cytotoxic necrotizing factors (CNF1, CNF2) was assayed using specific primers in PCR. The data obtained were compared with the clonal relationships obtained by analysis of multilocus enzyme electrophoresis (MLEE), restriction fragment length polymorphism (RFLP) of the rDNA (ribotyping) and enterobacterial repetitive intergenic consensus-PCR (ERIC-PCR). All isolates but one presented a combination of at least two of the characteristics studied, a fact suggesting the presence of pathogenicity islands (PAIs). Diffuse adherence type to HeLa cells was observed to occur in most of the strains, but adhesion to uroepithelial cells seems to be a more reliable test to verify pathogenicity. Although four strains seemed to be able to invade HeLa cells when assayed by light microscopy, electron microscopy studies demonstrated that these strains were not invasive. MLEE, RFLP and ERIC-PCR were able to group the isolates differently into main clusters that were not correlated with the presence of pathogenic traits.
Resumo:
There is considerable variation in the level of fecal egg excretion during Schistosoma mansoni infections. Within a single endemic area, the distribution of egg counts is typically overdispersed, with the majority of eggs excreted coming from a minority of residents. The purpose of this study was to quantify the influence of genetic factors on patterns of fecal egg excretion in a rural study sample in Brazil. Individual fecal egg excretions, expressed in eggs per gram of feces, were determined by the Kato-Katz method on stool samples collected on three different days. Detailed genealogic information was gathered at the time of sampling, which allowed assignment of 461 individuals to 14 pedigrees containing between 3 and 422 individuals. Using a maximum likelihood variance decomposition approach, we performed quantitative genetic analyses to determine if genetic factors could partially account for the observed pattern of fecal egg excretion. The quantitative genetic analysis indicated that between 21-37% of the variation in S. mansoni egg counts was attributable to additive genetic factors and that shared environment, as assessed by common household, accounted for a further 12-21% of the observed variation. A maximum likelihood heritability (h²) estimate of 0.44 ± 0.14 (mean ± SE) was found for the 9,604 second- and higher-degree pairwise relationships in the study sample, which is consistent with the upper limit (37%) of the genetic factor determined in the variance decomposition analysis. These analyses point to the significant influence of additive host genes on the pattern of S. mansoni fecal egg excretion in this endemic area.
Resumo:
Triatoma dimidiata is one of the major vectors of Chagas disease in Latin America. Its range includes Mexico, all countries of Central America, Colombia, and Ecuador. In light of recent genetic analysis suggesting that the possible origin of this species is the Yucatan peninsula, we have analyzed populations from the state of Yucatan, San Luis Potosi, and Veracruz in Mexico, and a population from the southern region of the Yucatan peninsula located in Northern Guatemala, the region of El Peten. Classical morphometry including principal component, discriminant, sexual dimorphism, and wing asymmetry was analyzed. San Luis Potosi and Veracruz populations were indistinguishable while clearly separate from Yucatan and Peten populations. Despite important genetic differences, Yucatan and Peten populations were highly similar. Yucatan specimens were the smallest in size, while females were larger than males in all populations. Only head characters were necessary to distinguish population level differences, although wing fluctuating asymmetry was present in all populations. These results are discussed in light of recent findings suggesting genetic polymorphism in most populations of Triatoma dimidiata south of Chiapas to Ecuador.
Resumo:
Analysing human genetic variation provides a powerful tool in understanding risk factors for disease. Toxoplasma gondii acquired by the mother can be transmitted to the fetus. Infants with the most severe clinical signs in brain and eye are those infected early in pregnancy when fetal immunity is least well developed. Genetic analysis could provide unique insight into events in utero that are otherwise difficult to determine. We tested the hypothesis that propensity for T. gondii to cause eye disease is associated with genes previously implicated in congenital or juvenile onset ocular disease. Using mother-child pairs from Europe (EMSCOT) and child/parent trios from North America (NCCCTS), we demonstrated that ocular and brain disease in congenital toxoplasmosis associate with polymorphisms in ABCA4 encoding ATP-binding cassette transporter, subfamily A, member 4 previously associated with juvenile onset retinal dystrophies including Stargardt's disease. Polymorphisms at COL2A1 encoding type II collagen, previously associated with Stickler syndrome, associated only with ocular disease in congenital toxoplasmosis. Experimental studies showed that both ABCA4 and COL2A1 show isoform-specific epigenetic modifications consistent with imprinting, which provided an explanation for the patterns of inheritance observed. These genetic and epigenetic risk factors provide unique insight into molecular pathways in the pathogenesis of disease.
Resumo:
The objective of this work was to characterize the populations of Gossypium barbadense in the states of Amapá and Pará, Brazil. In situ characterization was conducted through interviews with the owners of the plants and environmental observations. Leaf or petal tissue as well as seed samples were collected for genetic characterization by single sequence repeats markers and for storage in germplasm banks, respectively. The plants were maintained in dooryards and used mainly for medical purposes. The genetic analysis showed no heterozygous plants at the loci tested (f = 1), indicating that reproduction occurs mainly through selfing. The total genetic diversity was high (He = 0.39); and a high level of differentiation was observed between cotton plants from the two states (F ST = 0.36). Conventional methods of in situ maintenance of G. barbadense populations are not applicable. The conservation of the genetic variability of populations present in the two states could be achieved through germplasm collection and establishing of ex situ seed banks.