17 resultados para Gaussian complexities
em Scielo Saúde Pública - SP
Resumo:
ABSTRACT OBJECTIVE To identify individual and hospital characteristics associated with the risk of readmission in older inpatients for proximal femoral fracture in the period of 90 days after discharge. METHODS Deaths and readmissions were obtained by a linkage of databases of the Hospital Information System of the Unified Health System and the System of Information on Mortality of the city of Rio de Janeiro from 2008 to 2011. The population of 3,405 individuals aged 60 or older, with non-elective hospitalization for proximal femoral fracture was followed for 90 days after discharge. Cox multilevel model was used for discharge time until readmission, and the characteristics of the patients were used on the first level and the characteristics of the hospitals on the second level. RESULTS The risk of readmission was higher for men (hazard ratio [HR] = 1.37; 95%CI 1.08–1.73), individuals more than 79 years old (HR = 1.45; 95%CI 1.06–1.98), patients who were hospitalized for more than two weeks (HR = 1.33; 95%CI 1.06-1.67), and for those who underwent arthroplasty when compared with the ones who underwent osteosynthesis (HR = 0.57; 95%CI 0.41–0.79). Besides, patients admitted to state hospitals had lower risk for readmission when compared with inpatients in municipal (HR = 1.71; 95%CI 1.09–2.68) and federal hospitals (HR = 1.81; 95%CI 1.00–3.27). The random effect of the hospitals in the adjusted model remained statistically significant (p < 0.05). CONCLUSIONS Hospitals have complex structures that reflect in the quality of care. Thus, we propose that future studies may include these complexities and the severity of the patients in the analysis of the data, also considering the correlation between readmission and mortality to reduce biases.
Resumo:
The ubiquitous free radical, nitric oxide (NO), plays an important role in many biological processes including the regulation of the inflammatory response. Alterations in NO synthesis by endogenous systems likely influence inflammatory processes occurring in a wide range of diseases including many in the cardiovascular system (e.g. atherosclerosis). Progression of inflammatory conditions depends not only upon the recruitment and activation of inflammatory cells but also upon their subsequent removal from the inflammatory milieu. Apoptosis, or programmed cell death, is a fundamental process regulating inflammatory cell survival and is critically involved in ensuring the successful resolution of an inflammatory response. Apoptosis results in shutdown of secretory pathways and renders effete, but potentially highly histotoxic, cells instantly recognisable for non-inflammatory clearance by phagocytes (e.g., macrophages). However, dysregulation of apoptosis and phagocytic clearance mechanisms can have drastic consequences for development and resolution of inflammatory processes. In this review we highlight the complexities of NO-mediated regulation of inflammatory cell apoptosis and clearance by phagocytes and discuss the molecular mechanisms controlling these NO mediated effects. We believe that manipulation of pathways involving NO may have previously unrecognised therapeutic potential for limiting or resolving inflammatory and cardiovascular disease.
Resumo:
Any effort to make sense of the complexities of contemporary midwifery must deal not only with biomedical and governmental power structures but also with the definitions such structures impose upon midwives and the ramifications of these definitions within and across national and cultural borders. The international definition of a midwife requires graduations from a government-recognized educational program. Those who have not are not considered midwives but are labeled traditional birth attendants. Since there are myriad local names for midwives in myriad languages, the impact of this naming at local levels can be hard to assess. But on the global scale, the ramifications of the distinction between midwives who meet the international definition and those who do not have been profound. Those who do are incorporated into the health care system. Those who do not remain outside of it, and suffer multiple forms of discrimination as a result.
Resumo:
The structural modeling of spatial dependence, using a geostatistical approach, is an indispensable tool to determine parameters that define this structure, applied on interpolation of values at unsampled points by kriging techniques. However, the estimation of parameters can be greatly affected by the presence of atypical observations in sampled data. The purpose of this study was to use diagnostic techniques in Gaussian spatial linear models in geostatistics to evaluate the sensitivity of maximum likelihood and restrict maximum likelihood estimators to small perturbations in these data. For this purpose, studies with simulated and experimental data were conducted. Results with simulated data showed that the diagnostic techniques were efficient to identify the perturbation in data. The results with real data indicated that atypical values among the sampled data may have a strong influence on thematic maps, thus changing the spatial dependence structure. The application of diagnostic techniques should be part of any geostatistical analysis, to ensure a better quality of the information from thematic maps.
Resumo:
The soil CO2 emission has high spatial variability because it depends strongly on soil properties. The purpose of this study was to (i) characterize the spatial variability of soil respiration and related properties, (ii) evaluate the accuracy of results of the ordinary kriging method and sequential Gaussian simulation, and (iii) evaluate the uncertainty in predicting the spatial variability of soil CO2 emission and other properties using sequential Gaussian simulations. The study was conducted in a sugarcane area, using a regular sampling grid with 141 points, where soil CO2 emission, soil temperature, air-filled pore space, soil organic matter and soil bulk density were evaluated. All variables showed spatial dependence structure. The soil CO2 emission was positively correlated with organic matter (r = 0.25, p < 0.05) and air-filled pore space (r = 0.27, p < 0.01) and negatively with soil bulk density (r = -0.41, p < 0.01). However, when the estimated spatial values were considered, the air-filled pore space was the variable mainly responsible for the spatial characteristics of soil respiration, with a correlation of 0.26 (p < 0.01). For all variables, individual simulations represented the cumulative distribution functions and variograms better than ordinary kriging and E-type estimates. The greatest uncertainties in predicting soil CO2 emission were associated with areas with the highest estimated values, which produced estimates from 0.18 to 1.85 t CO2 ha-1, according to the different scenarios considered. The knowledge of the uncertainties generated by the different scenarios can be used in inventories of greenhouse gases, to provide conservative estimates of the potential emission of these gases.
Resumo:
The assessment of spatial uncertainty in the prediction of nutrient losses by erosion associated with landscape models is an important tool for soil conservation planning. The purpose of this study was to evaluate the spatial and local uncertainty in predicting depletion rates of soil nutrients (P, K, Ca, and Mg) by soil erosion from green and burnt sugarcane harvesting scenarios, using sequential Gaussian simulation (SGS). A regular grid with equidistant intervals of 50 m (626 points) was established in the 200-ha study area, in Tabapuã, São Paulo, Brazil. The rate of soil depletion (SD) was calculated from the relation between the nutrient concentration in the sediments and the chemical properties in the original soil for all grid points. The data were subjected to descriptive statistical and geostatistical analysis. The mean SD rate for all nutrients was higher in the slash-and-burn than the green cane harvest scenario (Student’s t-test, p<0.05). In both scenarios, nutrient loss followed the order: Ca>Mg>K>P. The SD rate was highest in areas with greater slope. Lower uncertainties were associated to the areas with higher SD and steeper slopes. Spatial uncertainties were highest for areas of transition between concave and convex landforms.
Resumo:
The objective of this work was to select semivariogram models to estimate the population density of fig fly (Zaprionus indianus; Diptera: Drosophilidae) throughout the year, using ordinary kriging. Nineteen monitoring sites were demarcated in an area of 8,200 m2, cropped with six fruit tree species: persimmon, citrus, fig, guava, apple, and peach. During a 24 month period, 106 weekly evaluations were done in these sites. The average number of adult fig flies captured weekly per trap, during each month, was subjected to the circular, spherical, pentaspherical, exponential, Gaussian, rational quadratic, hole effect, K-Bessel, J-Bessel, and stable semivariogram models, using ordinary kriging interpolation. The models with the best fit were selected by cross-validation. Each data set (months) has a particular spatial dependence structure, which makes it necessary to define specific models of semivariograms in order to enhance the adjustment to the experimental semivariogram. Therefore, it was not possible to determine a standard semivariogram model; instead, six theoretical models were selected: circular, Gaussian, hole effect, K-Bessel, J-Bessel, and stable.
Resumo:
The first computational implementation that automates the procedures involved in the calculation of infrared intensities using the charge-charge flux-dipole flux model is presented. The atomic charges and dipoles from the Quantum Theory of Atoms in Molecules (QTAIM) model was programmed for Morphy98, Gaussian98 and Gaussian03 programs outputs, but for the ChelpG parameters only the Gaussian programs are supported. Results of illustrative but new calculations for the water, ammonia and methane molecules at the MP2/6-311++G(3d,3p) theoretical level, using the ChelpG and QTAIM/Morphy charges and dipoles are presented. These results showed excellent agreement with analytical results obtained directly at the MP2/6-311++G(3d,3p) level of theory.
Resumo:
A comparative study based on potential energy surfaces (PES) of 2-butanedioic and hypothetic 2-butanedioic/HCl acids is useful for understanding the maleic acid isomerization. The PES enables locating conformers of minimum energy, intermediates of reactions and transition states. From contour diagrams, a set of possible reaction paths are depicted interconnecting the proposed structures. The study was carried out in absentia and in the presence of the catalyst (HCl), using an solvatation model provided by the Gaussian software package. Clearly, the effect of HCl is given by new reaction paths with lower energetic barriers in relation to the reaction without catalyzing.
Resumo:
The quantum harmonic oscillator is described by the Hermite equation.¹ The asymptotic solution is predominantly used to obtain its analytical solutions. Wave functions (solutions) are quadratically integrable if taken as the product of the convergent asymptotic solution (Gaussian function) and Hermite polynomial,¹ whose degree provides the associated quantum number. Solving it numerically, quantization is observed when a control real variable is "tuned" to integer values. This can be interpreted by graphical reading of Y(x) and |Y(x)|², without other mathematical analysis, and prove useful for teaching fundamentals of quantum chemistry to undergraduates.
Resumo:
Evidence-based Medicine (EBM) has become a major source of medical knowledge. It handles complexities of virtually every method or technique used in research. The knowledge on how the EBM researcher retrieves information, judges for relevance and analyzes derived data is invaluable for the skillful reader of medical scientific reports.
Resumo:
One of the main complexities in the simulation of the nonlinear dynamics of rigid bodies consists in describing properly the finite rotations that they may undergo. It is well known that, to avoid singularities in the representation of the SO(3) rotation group, at least four parameters must be used. However, it is computationally expensive to use a four-parameters representation since, as only three of the parameters are independent, one needs to introduce constraint equations in the model, leading to differential-algebraic equations instead of ordinary differential ones. Three-parameter representations are numerically more efficient. Therefore, the objective of this paper is to evaluate numerically the influence of the parametrization and its singularities on the simulation of the dynamics of a rigid body. This is done through the analysis of a heavy top with a fixed point, using two three-parameter systems, Euler's angles and rotation vector. Theoretical results were used to guide the numerical simulation and to assure that all possible cases were analyzed. The two parametrizations were compared using several integrators. The results show that Euler's angles lead to faster integration compared to the rotation vector. An Euler's angles singular case, where representation approaches a theoretical singular point, was analyzed in detail. It is shown that on the contrary of what may be expected, 1) the numerical integration is very efficient, even more than for any other case, and 2) in spite of the uncertainty on the Euler's angles themselves, the body motion is well represented.
Resumo:
The aim of this study was to identify and map the weed population in a no-tillage area. Geostatistical techniques were used in the mapping in order to assess this information as a tool for the localized application of herbicides. The area of study is 58.08 hectares wide and was sampled in a fixed square grid (which point spaced 50 m, 232 points) using a GPS receiver. In each point the weeds species and population were analyzed in a square with a 0.25 m2 fixed area. The species Ipomoea grandifolia, Gnaphalium spicatum, Richardia spp. and Emilia sonchifolia have presented no spatial dependence. However, the species Conyza spp., C. echinatus and E. indica have shown a spatial correlation. Among the models tested, the spherical model has shown had a better fit for Conyza spp. and Eleusine indica and the Gaussian model for Cenchrus echinatus. The three species have a clumped spatial distribution. The mapping of weeds can be a tool for localized control, making herbicide use more rational, effective and economical.
Resumo:
The present study analyzes the ectopic development of the rat skeletal muscle originated from transplanted satellite cells. Satellite cells (10(6) cells) obtained from hindlimb muscles of newborn female 2BAW Wistar rats were injected subcutaneously into the dorsal area of adult male rats. After 3, 7, and 14 days, the transplanted tissues (N = 4-5) were processed for histochemical analysis of peripheral nerves, inactive X-chromosome and acetylcholinesterase. Nicotinic acetylcholine receptors (nAChRs) were also labeled with tetramethylrhodamine-labeled alpha-bungarotoxin. The development of ectopic muscles was successful in 86% of the implantation sites. By day 3, the transplanted cells were organized as multinucleated fibers containing multiple clusters of nAChRs (N = 2-4), resembling those from non-innervated cultured skeletal muscle fibers. After 7 days, the transplanted cells appeared as a highly vascularized tissue formed by bundles of fibers containing peripheral nuclei. The presence of X chromatin body indicated that subcutaneously developed fibers originated from female donor satellite cells. Differently from the extensor digitorum longus muscle of adult male rat (87.9 ± 1.0 µm; N = 213), the diameter of ectopic fibers (59.1 µm; N = 213) did not obey a Gaussian distribution and had a higher coefficient of variation. After 7 and 14 days, the organization of the nAChR clusters was similar to that of clusters from adult innervated extensor digitorum longus muscle. These findings indicate the histocompatibility of rats from 2BAW colony and that satellite cells transplanted into the subcutaneous space of adult animals are able to develop and fuse to form differentiated skeletal muscle fibers.
Resumo:
Endochondral calcification involves the participation of matrix vesicles (MVs), but it remains unclear whether calcification ectopically induced by implants of demineralized bone matrix also proceeds via MVs. Ectopic bone formation was induced by implanting rat demineralized diaphyseal bone matrix into the dorsal subcutaneous tissue of Wistar rats and was examined histologically and biochemically. Budding of MVs from chondrocytes was observed to serve as nucleation sites for mineralization during induced ectopic osteogenesis, presenting a diameter with Gaussian distribution with a median of 306 ± 103 nm. While the role of tissue-nonspecific alkaline phosphatase (TNAP) during mineralization involves hydrolysis of inorganic pyrophosphate (PPi), it is unclear how the microenvironment of MV may affect the ability of TNAP to hydrolyze the variety of substrates present at sites of mineralization. We show that the implants contain high levels of TNAP capable of hydrolyzing p-nitrophenylphosphate (pNPP), ATP and PPi. The catalytic properties of glycosyl phosphatidylinositol-anchored, polidocanol-solubilized and phosphatidylinositol-specific phospholipase C-released TNAP were compared using pNPP, ATP and PPi as substrates. While the enzymatic efficiency (k cat/Km) remained comparable between polidocanol-solubilized and membrane-bound TNAP for all three substrates, the k cat/Km for the phosphatidylinositol-specific phospholipase C-solubilized enzyme increased approximately 108-, 56-, and 556-fold for pNPP, ATP and PPi, respectively, compared to the membrane-bound enzyme. Our data are consistent with the involvement of MVs during ectopic calcification and also suggest that the location of TNAP on the membrane of MVs may play a role in determining substrate selectivity in this micro-compartment.