67 resultados para Gases in plants.

em Scielo Saúde Pública - SP


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Calophyllum brasiliense and Mammea americana (Clusiaceae) are two trees from the tropical rain forests of the American continent. A previous screening showed high trypanocidal activity in the extracts of these species. Several mammea-type coumarins, triterpenoids and biflavonoids were isolated from the leaves of C. brasiliense. Mammea A/AA was obtained from the fruit peels of M. americana. These compounds were tested in vitro against epimastigotes and trypomastigotes of Trypanosoma cruzi, the etiologic agent of Chagas disease. The most potent compounds were mammea A/BA, A/BB, A/AA, A/BD and B/BA, with MC100 values in the range of 15 to 90 g/ml. Coumarins with a cyclized ,-dimethylallyl substituent on C-6, such as mammea B/BA, cyclo F + B/BB cyclo F, and isomammeigin, showed MC100 values > 200 g/ml. Several active coumarins were also tested against normal human lymphocytes in vitro, which showed that mammea A/AA and A/BA were not toxic. Other compounds from C. brasiliense, such as the triterpenoids, friedelin, canophyllol, the biflavonoid amentoflavone, and protocatechuic and shikimic acids, were inactive against the epimastigotes. The isopropylidenedioxy derivative of shikimic acid was inactive, and its structure was confirmed by X-ray diffraction. Our results suggest that mammea-type coumarins could be a valuable source of trypanocidal compounds.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The study was conducted in a facility for pigs during the nursery and finishing in the town of 'Montadas', in the semiarid of the state of Paraiba, Brazil, in the rainy and dry season, aiming to evaluate the concentration of oxygen, methane, carbon monoxide and ammonia, and the bioclimatic indexes: ambient temperature (AT), relative humidity (RH) and the index of black globe temperature and humidity (IBGTH). These indexes differed significantly (P>0.05) between the periods and times. The AT in the rainy season was in the thermal comfort zone(TCZ) in most of the times in the nursery; for the finishing phase, thermal discomfort occurred; during the dry season, there was thermal comfort in the nursery phase; in the finishing phase the thermal discomfort occurred at all times. In the rainy season, the IBGTH was in TCZ; in the dry season, it was above the TCZ. The RH in the rainy period was in the TCZ; in the dry season, in most of the times, below the range of the TCZ. The concentration of gases showed no differences (P > 0.05) between periods and between the times, and the carbon monoxide, hydrogen sulfide and methane were below 1.0 ppm, and the ammonia showed a mean of 5.2 ppm. None of the analyzed gases exceeded the limits established by Brazilian and international standards for animals and workers.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Oseltamivir phosphate is a potent viral inhibitor produced from shikimic acid extracted from seeds of Ilicium verum, the most important natural source. With the site of action 5-enolpyruvylshikimate-3-phosphate synthase (EPSP), glyphosate is the only compound capable of inhibiting its activity with the consequent accumulation of shikimic acid in plants. Corn and soybean plants were sprayed with reduced rates of glyphosate (0.0 to 230.4 g a.i. ha¹) and shikimic acid content in the dry mass was determined by HPLC 3, 7 and 10 days after application. Results showed shikimic acid accumulation in dry mass with increases of up to 969% in corn and 33,000% on soybeans, with peak concentrations 3 days after treatment (DAT). Industrial feasibility for shikimic acid production, combined with favorable climatic conditions for growing corn and soybean in virtually all over Brazil, favor the use of reduced rates of glyphosate in shikimic acid biosynthesis, with potential for use as an inducer in exploration of alternative sources for production of oseltamivir phosphate with low environmental impact.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This study has aimed to develop a method for simultaneous extraction and determination by liquid chromatography and mass spectrometry (LC-MS/MS) of glyphosate, aminomethylphosphonic acid (AMPA), shikimic acid, quinic acid, phenylalanine, tyrosine and tryptophan. For the joint analysis of these compounds the best conditions of ionization in mass spectrometry and for chromatographic separation of the compounds were selected. Calibration curves and linearity ranges were also determined for each compound. Different extraction systems of the compounds were tested from plant tissues collected from sugarcane (Saccharum officinarum) and eucalyptus (Eucalyptus urophylla platiphylla) plants two days after the glyphosate application at the dose of 720 g a.e. ha-1. The plant material was dried in a forced air circulation drying oven and in a lyophilizer, and subsequently the extractions with acidified water (pH 2.5), acetonitrile-water (50:50) [v/v] and methanol-water (50:50) [v/v] were tested. To verify the recovery of the compounds in the plant matrix with acidified water as an extracting solution, the samples were fortified with a solution containing the mixture of the different analytical standards present so that this one presented the same levels of 50 and 100 μg L-1 of each compound. All experiments were conducted with three replicates. The analytical method developed was efficient for compounds quantifications. The extraction from the samples dried in an oven and using acidified water allowed better extraction levels for all compounds. The recovery levels of the compounds in the fortified samples with known amounts of each compound for both plants samples were rather satisfactory.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In order to adapt to daily environmental changes, especially in relation to light availability, many organisms, such as plants, developed a vital mechanism that controls time-dependent biological events: the circadian clock. The circadian clock is responsible for predicting the changes that occur in the period of approximately 24 hours, preparing the plants for the following phases of the cycle. Some of these adaptations can influence the response of weeds to the herbicide application. Thus, the objectives of this review are to describe the physiological and genetic mechanisms of the circadian clock in plants, as well as to demonstrate the relationship of this phenomenon with the effectiveness of herbicides for weed control. Relationships are described between the circadian clock and the time of application of herbicides, leaf angle and herbicide interception, as well as photosynthetic activity in response to the circadian clock and herbicide efficiency. Further, it is discussed the role of phytochrome B (phyB) in the sensitivity of plants to glyphosate herbicide. The greater understanding of the circadian clock in plants is essential to achieve greater efficiency of herbicides and hence greater control of weeds and higher crop yields.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Plants present a cost effective production system for high value proteins. There is an increasing world demand for cheap vaccines that can be readily administered to the population, especially in economically less developed regions. A promising concept is the production of vaccines in plants that could be grown locally. Expression of antigenic peptides in the palatable parts of plants can lead to the production of edible active vaccines. Two major strategies are: i) to express antigens in transgenic plants, and ii) to produce antigenic peptides on the surface of plant viruses that could be used to infect host plants. This review considers the experimental data and early results for both strategies, and discusses the potential and problems of this new technology

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We are using molecular, biochemical, and genetic approaches to study the structural and regulatory genes controlling the assimilation of inorganic nitrogen into the amino acids glutamine, glutamate, aspartate and asparagine. These amino acids serve as the principal nitrogen-transport amino acids in most crop and higher plants including Arabidopsis thaliana. We have begun to investigate the regulatory mechanisms controlling nitrogen assimilation into these amino acids in plants using molecular and genetic approaches in Arabidopsis. The synthesis of the amide amino acids glutamine and asparagine is subject to tight regulation in response to environmental factors such as light and to metabolic factors such as sucrose and amino acids. For instance, light induces the expression of glutamine synthetase (GLN2) and represses expression of asparagine synthetase (ASN1) genes. This reciprocal regulation of GLN2 and ASN1 genes by light is reflected at the level of transcription and at the level of glutamine and asparagine biosynthesis. Moreover, we have shown that the regulation of these genes is also reciprocally controlled by both organic nitrogen and carbon metabolites. We have recently used a reverse genetic approach to study putative components of such metabolic sensing mechanisms in plants that may be conserved in evolution. These components include an Arabidopsis homolog for a glutamate receptor gene originally found in animal systems and a plant PII gene, which is a homolog of a component of the bacterial Ntr system. Based on our observations on the biology of both structural and regulatory genes of the nitrogen assimilatory pathway, we have developed a model for metabolic control of the genes involved in the nitrogen assimilatory pathway in plants.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Heavy metals can accumulate in soil and cause phytotoxicity in plants with some specific symptoms. The present study evaluated the specific symptoms on rice and soybeans plants caused by excess of heavy metals in soil. Rice and soybean were grown in pots containing soil with different levels of heavy metals. A completely randomized design was used, with four replications, using two crop species and seven sample soils with different contamination levels. Rice and soybean exhibited different responses to the high concentrations of heavy metals in the soil. Rice plants accumulated higher Cu, Mn, Pb and Zn concentrations and were more sensitive to high concentrations of these elements in the soil, absorbing them more easily compared to the soybean plants. However, high available Zn concentrations in the soil caused phytotoxicity symptoms in rice and soybean, mainly chlorosis and inhibited plant growth. Further, high Zn concentrations in the soil reduced the Fe concentration in the shoots of soybean and rice plants to levels considered deficient.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Arsenic is a metalloid highly toxic to plants and animals, causing reduced plant growth and various health problems for humans and animals. Silicon, however, has excelled in alleviating stress caused by toxic elements in plants. The aim of this study was to investigate the effects of Si in alleviating As stress in maize plants grown in a nutrient solution and evaluate the potential of the spectral emission parameters and the red fluorescence (Fr) and far-red fluorescence (FFr) ratio obtained in analysis of chlorophyll fluorescence in determination of this interaction. An experiment was carried out in a nutrient solution containing a toxic rate of As (68 μmol L-1) and six increasing rates of Si (0, 0.25, 0.5, 1.0, 1.5, and 2.0 mmol L-1). Dry matter production and concentrations of As, Si, and photosynthetic pigments were then evaluated. Chlorophyll fluorescence was also measured throughout plant growth. Si has positive effects in alleviating As stress in maize plants, evidenced by the increase in photosynthetic pigments. Silicon application resulted in higher As levels in plant tissue; therefore, using Si for soil phytoremediation may be a promising choice. Chlorophyll fluorescence analysis proved to be a sensitive tool, and it can be successfully used in the study of the ameliorating effects of Si in plant protection, with the Fr/FFr ratio as the variable recommended for identification of temporal changes in plants.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The objective of this work was to evaluate the natural attack by Acromyrmex crassispinus in initial Pinus taeda plantations without control measures against ants, as well as the effect of defoliation in seedlings of P. taeda. Evaluations of the attack of leaf-cutting ants on P. taeda plantations were done monthly in the first six months, then 9 and 12 months after planting. The percentages of plants that were naturally attacked by ants were registered. The effect of defoliation was evaluated by artificial defoliation, simulating the natural patterns of attack by A. crassispinus on P. taeda seedlings. The natural attack of A. crassispinus was greater during the first months after planting, being more intense in the first 30 days. Artificial defoliation indicated that there were no significant losses in diameter and height in plants with less than 75% defoliation. However, there were significant losses in diameter and height in plants with 100% defoliation, independently of the cut of the apical meristem, and also plant death. The control of leaf-cutting ants in P. taeda plantings, in which A. crassispinus is the most frequent leaf-cutting ant, should be intense only at the beginning of planting, since the most severe attacks occur during this time.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This study aims to evaluate the leaf concentration of nitrogen and phosphorus correlated to the production of photoassimilates in beans plants (Phaseolus vulgaris L.) under high [CO2] and drought stress. The experiment was conducted in Viçosa (Brazil), during the period from April to July 2009, by using open-top chambers equipped with CO2 injection system. The drought stress was applied, through the irrigation suspension, during the period from flowering to maturation. The experimental design was randomized blocks in split-plot scheme with four replication, where the plots with plants grown in [CO2] of 700 mg L-1 and [CO2] environment of 380 mg L-1 and the subplots with plants with and without drought stress. The results were submitted to ANOVA and Tukey test (p < 0.05). In the plants under high [CO2] with and without drought stress, the photosynthetic rate increased by 59%, while the dry matter presented an increment of 20% in the plants under high [CO2] without drought stress. Reductions in [N] and [P] occurred in plants grown under high [CO2], resulting in greater efficiency in nitrogen use for photosynthesis. The high [CO2] increase only the total dry matter and not the total mass of grains. The drought stress reduces the dry matter and mass of grain, even at high [CO2].

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The objective of this work was to investigate the injuries caused to the photosynthetic apparatus of three types of rice exposed to application of imidazolinone group herbicides. Two experiments were conducted using herbicides Imazethapyr+imazapic and Imazapyr+imazapic, in a split-plot experimental design, and a 3 x 3 factorial, with six replications. The first factor (A) consisted of the herbicide rates 0, 100 e 200 g ha-1 of Imazethapyr+imazapic and 0, 140 e 280 g ha-1 of Imazapyr+imazapic; factor B consisted of type of rice (cv. Puitá Inta CL, sensitive red rice ecotype and red rice ecotype with suspected herbicide tolerance to Imidazolinone). Chlorophyll a fluorescence parameters were evaluated in plants at 30 days after herbicide application, using a portable fluorometer (HandyPEA, Hanstech). The photosynthetic metabolism of cv. Puitá Inta CL was found to tolerate commercial dosages of both herbicides. High sensitivity to the herbicides was observed for the sensitive red rice ecotype, while the photosynthetic apparatus of red rice ecotype with suspected herbicide tolerance showed high tolerance to both herbicides applied at rates higher than the commercial rate. The application of chemical herbicides of the imidazolinone group on rice plants causes changes in the photosynthetic metabolism of plants, detected by evaluating the emission of transient chlorophyll a fluorescence. This method can be useful in helping detect resistance and/or tolerance of red rice plants to herbicides of the imidazolinone group.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

In recent years, the application of silicon (Si) in crops, including coffee, has become a common practice. The objective of this study was to assess the silicon uptake by coffee seedlings and its effects on plant growth, water and macro and micronutrient uptake. The research was conducted using nutrient solution in a greenhouse at the Departamento de Fitotecnia da Universidade Federal de Viçosa, in a completely randomized design with two treatments (with and without silicon) and three replications. Each plot consisted of three plants grown in a 800 mL vessel containing the treatment solutions. At every three days, water consumption, the concentration of OH - and the depletion of Si and K were assessed in the nutrient solutions. After 33 days, the plants were assessed with regard to their fresh and dry weight of leaves, roots and stem, shoot height and total length of the plant (shoot and root). Number of leaves and internodes, and the content and accumulation of silicon, macro, and micronutrients were also determined. The consumption of water, the amount of potassium uptake and, biomass accumulation were greater in plants grown in solution without silicon addition. However, the concentration of OH- in the solution and the amount of silicon uptake were greater in plants grown in solution with added silicon. Silicon accumulation was greater in leaves than in stem and roots. Silicon decreased coffee plant accumulation of phosphorus, potassium, calcium, zinc, copper and iron.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

All essential nutrients can affect the incidence and severity of plant diseases. Although silicon (Si) is not considered as an essential nutrient for plants, it stands out for its potential to decrease disease intensity in many crops. The mechanism of Si action in plant resistance is still unclear. Si deposition in plant cell walls raised the hypothesis of a possible physical barrier to pathogen penetration. However, the increased activity of phenolic compounds, polyphenol oxidases and peroxidases in plants treated with Si demonstrates the involvement of this element in the induction of plant defense responses. The studies examined in this review address the role of Si in disease control and the possible mechanisms involved in the mode of Si action in disease resistance in plants.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Global warming has potentially catastrophic impacts in Amazonia, while at the same time maintenance of the Amazon forest offers one of the most valuable and cost-effective options for mitigating climate change. We know that the El Niño phenomenon, caused by temperature oscillations of surface water in the Pacific, has serious impacts in Amazonia, causing droughts and forest fires (as in 1997-1998). Temperature oscillations in the Atlantic also provoke severe droughts (as in 2005). We also know that Amazonian trees die both from fires and from water stress under hot, dry conditions. In addition, water recycled through the forest provides rainfall that maintains climatic conditions appropriate for tropical forest, especially in the dry season. What we need to know quickly, through intensified research, includes progress in representing El Niño and the Atlantic oscillations in climatic models, representation of biotic feedbacks in models used for decision-making about global warming, and narrowing the range of estimating climate sensitivity to reduce uncertainty about the probability of very severe impacts. Items that need to be negotiated include the definition of "dangerous" climate change, with the corresponding maximum levels of greenhouse gases in the atmosphere. Mitigation of global warming must include maintaining the Amazon forest, which has benefits for combating global warming from two separate roles: cutting the flow the emissions of carbon each year from the rapid pace of deforestation, and avoiding emission of the stock of carbon in the remaining forest that can be released by various ways, including climate change itself. Barriers to rewarding forest maintenance include the need for financial rewards for both of these roles. Other needs are for continued reduction of uncertainty regarding emissions and deforestation processes, as well as agreement on the basis of carbon accounting. As one of the countries most subject to impacts of climate change, Brazil must assume the leadership in fighting global warming.