39 resultados para Gas- and particle PAHs
em Scielo Saúde Pública - SP
The effect of plantation silviculture on soil organic matter and particle-size fractions in Amazonia
Resumo:
Eucalyptus grandis and other clonal plantations cover about 3.5 million ha in Brazil. The impacts of intensively-managed short-rotation forestry on soil aggregate structure and Carbon (C) dynamics are largely undocumented in tropical ecosystems. Long-term sustainability of these systems is probably in part linked to maintenance of soil organic matter and good soil structure and aggregation, especially in areas with low-fertility soils. This study investigated soil aggregate dynamics on a clay soil and a sandy soil, each with a Eucalyptus plantation and an adjacent primary forest. Silvicultural management did not reduce total C stocks, and did not change soil bulk density. Aggregates of the managed soils did not decrease in mass as hypothesized, which indicates that soil cultivation in 6 year cycles did not cause large decreases in soil aggregation in either soil texture. Silt, clay, and C of the sandy plantation soil shifted to greater aggregate protection, which may represent a decrease in C availability. The organic matter in the clay plantation soil increased in the fractions considered less protected while this shift from C to structural forms considered more protected was not observed.
Physical properties and particle-size fractions of soil organic matter in crop-livestock integration
Resumo:
Crop-livestock integration represents an interesting alternative of soil management, especially in regions where the maintenance of cover crops in no-tillage systems is difficult. The objective of this study was to evaluate soil physical and chemical properties, based on the hypothesis that a well-managed crop-livestock integration system improves the soil quality and stabilizes the system. The experiment was set up in a completely randomized design, with five replications. The treatments were arranged in a 6 x 4 factorial design, to assess five crop rotation systems in crop-livestock integration, and native forest as reference of soil undisturbed by agriculture, in four layers (0.0-0.05; 0.05-0.10; 0.10-0.15 and 0.15-0.20 m). The crop rotation systems in crop-livestock integration promoted changes in soil physical and chemical properties and the effects of the different systems were mainly detected in the surface layer. The crops in integrated crop-livestock systems allowed the maintenance of soil carbon at levels equal to those of the native forest, proving the efficiency of these systems in terms of soil conservation. The systems influenced the environmental stability positively; the soil quality indicator mineral-associated organic matter was best related to aggregate stability.
Resumo:
The aim was to provide reference data for blood gas/acid-base status and electrolytes for non-anesthetized Amazon parrots (Amazona aestiva). Thirty-five adult parrots from Tietê ecologic park were utilized. Arterial blood (0.3ml) samples were anaerobically collected from the superficial ulnar artery in heparinized (sodium heparin) 1-ml plastic syringes. The samples were immediately analyzed through a portable analyzer (i-STAT*, Abbot, Illinois, USA) with cartridges (EG7+). These data were grouped in such a way as to present both mean and standard deviation: body weight (360±37g), respiratory rate (82±33 b/m), temperature (41.8±0.6°C), hydrogen potential (7.452±0.048), carbon dioxide partial pressure (22.1±4.0mmHg), oxygen partial pressure (98.1±7.6mmHg), base excess (-7.9±3.1), plasma concentration of bicarbonate ions (14.8±2.8mmol/L), oxygen saturation (96.2±1.1%), plasma concentration of sodium (147.4±2.2mmol/L), plasma concentration of potassium (3.5±0.53mmol/L), plasma concentration of calcium (0.8±0.28mmol/L), hematocrit (38.7±6.2%) and concentration of hemoglobin (13.2±2.1g/dl). This study led us to conclude that, although the results obtained showed hypocapnia and low values of bicarbonate and base excess, when compared to other avian species, these data are very similar. Besides, in spite of the equipment being approved only for human beings, it was considered simple and very useful in the analysis of avian blood samples. By using this equipment we were able to provide references data for non-anaesthetized Amazon parrots.
Resumo:
Zirconia was prepared by a precipitation method and calcined at 723 K, 1023 K, and 1253 K in order to obtain monoclinic zirconia. The prepared zirconia was characterized by XRD, SEM, EDX, surface area and pore size analyzer, and particle size analyzer. Monoclinic ZrO2 as a catalyst was used for the gas-phase oxidation of isopropanol to acetone in a Pyrex-glass-flow-type reactor with a temperature range of 443 K - 473 K. It was found that monoclinic ZrO2 shows remarkable catalytic activity (68%) and selectivity (100%) for the oxidation of isopropanol to acetone. This kinetic study reveals that the oxidation of isopropanol to acetone follows the L-H mechanism.
Resumo:
This paper presents the experimental characterization of hydrodynamics and gas-liquid mass transfer in a three-phase fluidized bed containing polystyrene and nylon particles. The influence of gas and liquid velocities on phase holdups and volumetric gas-liquid mass transfer coefficient was investigated for flow conditions similar to those applied in biotechnological process. The phase holdups were obtained by the pressure profile technique. The volumetric gas-liquid mass transfer coefficient was obtained adjusting the experimental concentration profiles of dissolved oxygen in the liquid phase with the predictions of the axial dispersion model. According to experimental results the liquid holdup increases with the gas velocity, whereas the solid holdup decreases. The gas holdup increases significantly with the increase in gas velocity, and it shows for the three-phase fluidized bed comparable values or larger than those of bubble column. The volumetric gas-liquid mass transfer coefficient increases significantly with an increase in the air velocity for both bubble column and fluidized beds. In addition, in the operational condition of high liquid velocity, the presence of low-density particles in the bed increased the gas-liquid mass transfer, and thus the volumetric mass transfer coefficient values obtained in the fluidized bed were comparable or larger than those of bubble column.
Resumo:
Nitrous oxide (N2O) is the most important non-CO2 greenhouse gas and soil management systems should be evaluated for their N2O mitigation potential. This research evaluated a long-term (22 years) experiment testing the effect of soil management systems on N2O emissions in the postharvest period (autumn) from a subtropical Rhodic Hapludox at the research center FUNDACEP, in Cruz Alta, state of Rio Grande do Sul. Three treatments were evaluated, one under conventional tillage with soybean residues (CTsoybean) and two under no-tillage with soybean (NTsoybean) and maize residues (NTmaize). N2O emissions were measured eight times within 24 days (May 2007) using closed static chambers. Gas flows were obtained based on the relations between gas concentrations in the chamber at regular intervals (0, 15, 30, 45 min) analyzed by gas chromatography. After soybean harvest, accumulated N2O emissions in the period were approximately three times higher in the untilled soil (164 mg m-2 N) than under CT (51 mg m-2 N), with a short-lived N2O peak of 670 mg m-2 h-1 N. In contrast, soil N2O emissions in NT were lower after maize than after soybean, with a N2O peak of 127 g m-2 h-1 N. The multivariate analysis of N2O fluxes and soil variables, which were determined simultaneously with air sampling, demonstrated that the main driving variables of soil N2O emissions were soil microbial activity, temperature, water-filled pore space, and NO3- content. To replace soybean monoculture, crop rotation including maize must be considered as a strategy to decrease soil N2O emissions from NT soils in Southern Brazil in a Autumn.
Resumo:
Studies on water retention and availability are scarce for subtropical or humid temperate climate regions of the southern hemisphere. The aims of this study were to evaluate the relations of the soil physical, chemical, and mineralogical properties with water retention and availability for the generation and validation of continuous point pedotransfer functions (PTFs) for soils of the State of Santa Catarina (SC) in the South of Brazil. Horizons of 44 profiles were sampled in areas under different cover crops and regions of SC, to determine: field capacity (FC, 10 kPa), permanent wilting point (PWP, 1,500 kPa), available water content (AW, by difference), saturated hydraulic conductivity, bulk density, aggregate stability, particle size distribution (seven classes), organic matter content, and particle density. Chemical and mineralogical properties were obtained from the literature. Spearman's rank correlation analysis and path analysis were used in the statistical analyses. The point PTFs for estimation of FC, PWP and AW were generated for the soil surface and subsurface through multiple regression analysis, followed by robust regression analysis, using two sets of predictive variables. Soils with finer texture and/or greater organic matter content retain more moisture, and organic matter is the property that mainly controls the water availability to plants in soil surface horizons. Path analysis was useful in understanding the relationships between soil properties for FC, PWP and AW. The predictive power of the generated PTFs to estimate FC and PWP was good for all horizons, while AW was best estimated by more complex models with better prediction for the surface horizons of soils in Santa Catarina.
Resumo:
The knowledge of the slug flow characteristics is very important when designing pipelines and process equipment. When the intermittences typical in slug flow occurs, the fluctuations of the flow variables bring additional concern to the designer. Focusing on this subject the present work discloses the experimental data on slug flow characteristics occurring in a large-size, large-scale facility. The results were compared with data provided by mechanistic slug flow models in order to verify their reliability when modelling actual flow conditions. Experiments were done with natural gas and oil or water as the liquid phase. To compute the frequency and velocity of the slug cell and to calculate the length of the elongated bubble and liquid slug one used two pressure transducers measuring the pressure drop across the pipe diameter at different axial locations. A third pressure transducer measured the pressure drop between two axial location 200 m apart. The experimental data were compared with results of Camargo's1 algorithm (1991, 1993), which uses the basics of Dukler & Hubbard's (1975) slug flow model, and those calculated by the transient two-phase flow simulator OLGA.
Resumo:
Air pollution has been associated with health effects on different age groups. The present study was designed to assess the impact of daily changes in air pollutants (NO2, SO2, CO, O3, and particle matter (PM10)) on total number of daily neonatal deaths (those that occur between the first and the 28th days of life) in São Paulo, from January 1998 to December 2000, since adverse outcomes such as neonatal deaths associated with air pollution in Brazil have not been evaluated before. Generalized additive Poisson regression models were used and nonparametric smooth functions (loess) were adopted to control long-term trend, temperature, humidity, and short-term trends. A linear term was used for holidays. The association between air pollutants and neonatal deaths showed a short time lag. Interquartile range increases in PM10 (23.3 µg/m³) and SO2 (9.2 µg/m³) were associated with increases of 4% (95% CI, 2-6) and 6% (95% CI, 4-8), respectively. Instead of adopting a two-pollutant model we created an index to represent PM10 and SO2 effects. For an interquartile range increase in the index an increase of 6.3% (95% CI, 6.1-6.5) in neonatal deaths was observed. These results agree with previous studies performed by our group showing the deleterious effects of air pollutants during the perinatal period. The method reported here represents an alternative approach to analyze the relationship between highly correlated pollutants and public health problems, reinforcing the idea of the synergic effects of air pollutants in public health.
Resumo:
The arterial partial pressure (P CO2) of carbon dioxide is virtually constant because of the close match between the metabolic production of this gas and its excretion via breathing. Blood gas homeostasis does not rely solely on changes in lung ventilation, but also to a considerable extent on circulatory adjustments that regulate the transport of CO2 from its sites of production to the lungs. The neural mechanisms that coordinate circulatory and ventilatory changes to achieve blood gas homeostasis are the subject of this review. Emphasis will be placed on the control of sympathetic outflow by central chemoreceptors. High levels of CO2 exert an excitatory effect on sympathetic outflow that is mediated by specialized chemoreceptors such as the neurons located in the retrotrapezoid region. In addition, high CO2 causes an aversive awareness in conscious animals, activating wake-promoting pathways such as the noradrenergic neurons. These neuronal groups, which may also be directly activated by brain acidification, have projections that contribute to the CO2-induced rise in breathing and sympathetic outflow. However, since the level of activity of the retrotrapezoid nucleus is regulated by converging inputs from wake-promoting systems, behavior-specific inputs from higher centers and by chemical drive, the main focus of the present manuscript is to review the contribution of central chemoreceptors to the control of autonomic and respiratory mechanisms.
Resumo:
The aim of this study was to extract and identify volatile compounds from pineapple residues generated during concentrated juice processing. Distillates of pineapple residues were obtained using the following techniques: simple hydrodistillation and hydrodistillation by passing nitrogen gas. The volatile compounds present in the distillates were captured by the solid-phase microextraction technique. The volatile compounds were identified in a system of high resolution gas chromatography system coupled with mass spectrometry using a polyethylene glycol polar capillary column as stationary phase. The pineapple residues constituted mostly of esters (35%), followed by ketones (26%), alcohols (18%), aldehydes (9%), acids (3%) and other compounds (9%). Odor-active volatile compounds were mainly identified in the distillate obtained using hydrodistillation by passing nitrogen gas, namely decanal, ethyl octanoate, acetic acid, 1-hexanol, and ketones such as γ-hexalactone, γ-octalactone, δ-octalactone, γ-decalactone, and γ-dodecalactone. This suggests that the use of an inert gas and lower temperatures helped maintain higher amounts of flavor compounds. These data indicate that pineapple processing residue contained important volatile compounds which can be extracted and used as aroma enhancing products and have high potential for the production of value-added natural essences.
Resumo:
It is well known that the culture media used in the presumptive diagnosis of suspiciuous colonies from plates inoculated with stools for isolation of enteric organisms do not always correctly indicate the major groups of enterobacteria. In an effort to obtain a medium affording more exact indications, several media (1-9) have been tested. Modifications of some of these media have also been tested with the result that a satisfactory modification of Monteverde's medium was finaly selected. This proved to be most satisfactory, affording, as a result of only one inoculation, a complete series of basic indications. The modification involves changes in the formula, in the method of preparation and in the manner of storage. The formulae are: A. Thymol blue indicator: NaOH 0.1/N .............. 34.4 ml; Thymol blue .............. 1.6 g; Water .................... 65.6 ml. B. Andrade's indicator. C. Urea and sugar solution: Urea ..................... 20 g; Lactose ................... 30 g; Sucrose ................... 30 g; Water .................... 100 ml. The mixture (C.) should be warmed slightly in order to dissolve the ingredients rapidly. Sterilise by filtration (Seitz). Keep stock in refrigeratior. The modification of Monteverde's medium is prepared in two parts. Semi-solid part - Peptone (Difco) 2.0 g; NaCl 0.5 g; Agar 0.5 g; Water 100.0 ml. Boil to dissolve the ingredients. Adjust pH with NaOH to 7.3-7.4. Boil again for precipitation. Filter through cotton. Ad indicators "A" 0.3 ml and "B" 1.0 ml. Sterilise in autoclave 115ºC, 15 minutes in amounts not higher than 200 ml. Just before using, add solution "C" asseptically in amounts of 10 ml to 200 ml of the melted semi-solid medium, maintained at 48-50ºC. Solid part - Peptone (Difco) 1.5 g; Trypticase (BBL) 0.5 g; Agar 2.0 g; Water 100,00 ml. Boil to dissolve the ingredients. Adjust pH with NaOH to 7.3-7.4. Boils again. Filter through cotton. Add indicators "A" 0.3 ml and "B" 1.0 ml; ferrous ammonium sulfate 0.02 g; sodiun thiosulfate 0.02 g. Sterilise in autoclave 115ºC, 15 minutes in amounts not higher than 200 ml. Just before using, add solution "C" asseptically in amounts of 10 ml to 200 ml of the melted solid medium, maintained at 48-50ºC. Final medium - The semi-solid part is dispensed first (tubes about 12 x 120 mm) in 2.5 ml amounts and left to harden at room temperature, in vertical position. The solid part is dispensed over the hardened semi-solid one in amounts from 2.0 ml to 2.5 ml and left to harden in slant position, affording a butt of 12 to 15 mm. The tubes of medium should be subjected to a sterility test in the incubator, overnight. Tubes showing spontaneous gas bubbles (air) should then be discarded. The medium should be stored in the incubator (37ºC), for not more than 2 to 4 days. Storage of the tubes in the ice-box produces the absorption of air which is released as bubbles when the tubes are incubated at 37ºC after inoculation. This fact confirmed the observation of ARCHAMBAULT & McCRADY (10) who worked with liquid media and the aplication of their observation was found to be essential to the proper working conditions of this double-layer medium. Inoculation - The inoculation is made by means of a long straight needle, as is usually done on the triple sugar, but the needel should penetrate only to about half of the height of the semi-solid column. Indol detection - After inoculation, a strip of sterelized filter papaer previously moistened with Ehrlich's reagent, is suspended above the surface of the medium, being held between the cotton plug and the tube. Indications given - In addition to providing a mass of organisms on the slant for serological invetigations, the medium gives the following indications: 1. Acid from lactose and/or sucrose (red, of yellowsh with strains which reduce the indicators). 2. Gas from lactose and/or sucrose (bubbles). 3. H[2]S production, observed on the solid part (black). 4. Motility observed on the semi-solid part (tubidity). 5. Urease production, observed on solid and semi-solid parts (blue). 6. Indol production, observed on the strip of filter paper (red or purplish). Indol production is not observed with indol positive strains which rapidly acidify the surface o the slant, and the use of oxalic acid has proved to give less sensitive reaction (11). Reading of results - In most cases overnight incubation is enough; sometimes the reactions appear within only a few hours of incubation, affording a definitive orientation of the diagnosis. With some cultures it is necessary to observe the medium during 48 hours of incubation. A description showing typical differential reaction follows: Salmonella: Color of the medium unchanged, with blackening of the solid part when H[2]S is positive. The slant tends to alkalinity (greenish of bluish). Gas always absent. Indol negative. Motility positive or negative. Shigella: Color of the medium unchanged at the beginning of incubation period, but acquiring a red color when the strain is late lactose/sucrose positive. Slant tending to alkalinity (greenish or purplish). Indol positive or negative. Motility, gas and H[2]S always negative. Proteus: Color of the medium generally changes entirely to blue or sometimes to green (urease positive delayed), with blackening of solid part when H[2]S is positive. Motility positive of negative. Indol positive. Gas positive or negative. The strains which attack rapidly sucrose may give a yellow-greenish color to the medium. Sometimes the intense blue color of the medium renders difficult the reading of the H[2]S production. Escherichiae and Klebsiellae: Color of the medium red or yellow (acid) with great and rapid production of gas. Motility positive or negative. Indol generally impossible to observe. Paracoli: Those lactose of sucrose positive give the same reaction as Esherichia. Those lactose or sucrose negatives give the same reactions as Salmonellae. Sometimes indol positive and H[2]S negative. Pseudomonas: Color of the medium unchanged. The slant tends to alkalinity. It is impossible to observe motility because there is no growth in the bottom. Alkaligenes: Color of the medium unchanged. The slant tends to alkalinity. The medium does not alter the antigenic properties of the strains and with the mass of organisms on the slant we can make the serologic diagnosis. It is admitted that this medium is somewhat more laborious to prepare than others used for similar purposes. Nevertheless it can give informations generally obtained by two or three other media. Its use represents much saving in time, labor and material, and we suggest it for routine laboratory work in which a quick presumptive preliminary grouping of enteric organisms is needed.
Resumo:
The current high price of KCl and great dependence on importation to satisfy the Brazilian demand indicate the need for studies that evaluate the efficiency of other K sources, particularly those based on domestic raw material. For this purpose, a greenhouse experiment was conducted with samples of a sandy clay loam Typic Haplustox, in a completely randomized 4 x 3 x 2 factorial design: four K rates (0, 60, 120, and 180 mg kg-1), three sources (potassium chloride (KCl), fused magnesium potassium phosphate (FMPP) and a mixture of 70 % FMPP + 30 % KCl) and two particle sizes (100 and 60 mesh), with three replications. Potassium fertilization resulted in significant increases in shoot dry matter production and in K concentrations, both in soil and plants. The K source and particle size had no significant effect on the evaluated characteristics. Potassium critical levels in the soil and the shoots were 1.53 mmol c dm-3 and 19.1 g kg-1, respectively.
Resumo:
One of the main negative anthropic effects on soil is the formation of crusts, resulting in soil degradation. This process of physical origin reduces soil water infiltration, causing increased runoff and consequently soil losses, water erosion and/or soil degradation. The study and monitoring of soil crusts is important for soil management and conservation, mainly in tropical regions where research is insufficient to explain how soil crusts are formed and how they evolve. The purpose of this study was to monitor these processes on soils with different particle size distributions. Soil crusts on a sandy/sandy loam Argissolo Vermelho-Amarelo (Typic Hapludult), sandy loam Latossolo Vermelho-Amarelo (Typic Hapludox) and a clayey Nitossolo Vermelho eutroférrico (Rhodic Kandiudalf) were monitored. The soil was sampled and data collected after 0, 3, 5 and 10 rain storms with intensities above 25 mm h-1, from December 2008 to May 2009. Soil chemical and particle size distribution analysis were performed. The changes caused by rainfall were monitored by determining the soil roughness, hydraulic conductivity and soil water retention curves and by micromorphological analysis. Reduced soil roughness and crust formation were observed for all soils during the monitored rainfall events. However, contrary to what was expected according to the literature, crust formation was not always accompanied by reductions in total porosity, hydraulic conductivity and soil water retention.
Variability of soil fertility properties in areas planted to sugarcane in the State of Goias, Brazil
Resumo:
Soil sampling should provide an accurate representation of a given area so that recommendations for amendments of soil acidity, fertilization and soil conservation may be drafted to increase yield and improve the use of inputs. The aim of this study was to evaluate the variability of soil fertility properties of Oxisols in areas planted to sugarcane in the State of Goias, Brazil. Two areas of approximately 8,100 m² each were selected, representing two fields of the Goiasa sugarcane mill in Goiatuba. The sugarcane crop had a row spacing of 1.5 m and subsamples were taken from 49 points in the row and 49 between the row with a Dutch auger at depths of 0.0-0.2 and 0.2-0.4 m, for a total of 196 subsamples for each area. The samples were individually subjected to chemical analyses of soil fertility (pH in CaCl2, potential acidity, organic matter, P, K, Ca and Mg) and particle size analysis. The number of subsamples required to compose a sample within the acceptable ranges of error of 5, 10, 20 and 40 % of each property were computed from the coefficients of variation and the Student t-value for 95 % confidence. The soil properties under analysis exhibited different variabilities: high (P and K), medium (potential acidity, Ca and Mg) and low (pH, organic matter and clay content). Most of the properties analyzed showed an error of less than 20 % for a group of 20 subsamples, except for P and K, which were capable of showing an error greater than 40 % around the mean. The extreme variability in phosphorus, particularly at the depth of 0.2-0.4 m, attributed to banded application of high rates of P fertilizers at planting, places limitations on assessment of its availability due to the high number of subsamples required for a composite sample.