37 resultados para Gaba

em Scielo Saúde Pública - SP


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The involvement of GABA-A receptors in the control of nociception was studied using the tail-flick test in rats. Non-hypnotic doses of the barbiturates phenobarbital (5-50 mg/kg), pentobarbital (17-33 mg/kg), and thiopental (7.5-30 mg/kg), of the benzodiazepine midazolam (10 mg/kg) or of ethanol (0.4-1.6 g/kg) administered by the systemic route reduced the latency for the tail-flick response, thus inducing a 'hyperalgesic' state in the animals. In contrast, non-convulsant doses of the GABA-A antagonist picrotoxin (0.12-1.0 mg/kg) administered systemically induced an increase in the latency for the tail-flick response, therefore characterizing an 'antinociceptive' state. Previous picrotoxin (0.12 mg/kg) treatment abolished the hyperalgesic state induced by effective doses of the barbiturates, midazolam or ethanol. Since phenobarbital, midazolam and ethanol reproduced the described hyperalgesic effect of GABA-A-specific agonists (muscimol, THIP), which is specifically antagonized by the GABA-A antagonist picrotoxin, our results suggest that GABA-A receptors are tonically involved in the modulation of nociception in the rat central nervous system

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The aim of the present study was to determine if phenobarbital affects the nociception threshold. Systemic (1-20 mg/kg) phenobarbital administration dose dependently induced hyperalgesia in the tail-flick, hot-plate and formalin tests in rats and in the abdominal constriction test in mice. Formalin and abdominal constriction tests were the most sensitive procedures for the detection of hyperalgesia in response to phenobarbital compared with the tail-flick and hot-plate tests. The hyperalgesia induced by systemic phenobarbital was blocked by previous administration of 1 mg/kg ip picrotoxin or either 1-2 mg/kg sc or 10 ng icv bicuculline. Intracerebroventricular phenobarbital administration (5 µg) induced hyperalgesia in the tail-flick test. In contrast, intrathecal phenobarbital administration (5 µg) induced antinociception and blocked systemic-induced hyperalgesia in this test. We suggest that phenobarbital may mediate hyperalgesia through GABA-A receptors at supraspinal levels and antinociception through the same kind of receptors at spinal levels.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The rostral ventrolateral medulla (RVLM) contains neurons involved in tonic and reflex control of arterial pressure. We describe the effects of gamma-aminobutyric acid (GABA) and anesthetics injected into the RVLM of conscious and urethane (1.2 g/kg, iv) anesthetized Wistar rats (300-350 g). In conscious rats, bilateral microinjection of GABA (50 nmol/200 nl) induced a small but significant decrease in blood pressure (from 130 ± 3.6 to 110 ± 5.6 mmHg, N = 7). A similar response was observed with sodium pentobarbital microinjection (24 nmol/200 nl). However, in the same animals, the fall in blood pressure induced by GABA (from 121 ± 8.9 to 76 ± 8.8 mmHg, N = 7) or pentobarbital (from 118 ± 4.5 to 57 ± 11.3 mmHg, N = 6) was significantly increased after urethane anesthesia. In contrast, there was no difference between conscious (from 117 ± 4.1 to 92 ± 5.9 mmHg, N = 7) and anesthetized rats (from 123 ± 6.9 to 87 ± 8.7 mmHg, N = 7) when lidocaine (34 nmol/200 nl) was microinjected into the RVLM. The heart rate variations were not consistent and only eventually reached significance in conscious or anesthetized rats. The right position of pipettes was confirmed by histology and glutamate microinjection into the RVLM. These findings suggest that in conscious animals the RVLM, in association with the other sympathetic premotor neurons, is responsible for the maintenance of sympathetic vasomotor tone during bilateral RVLM inhibition. Activity of one or more of these premotor neurons outside the RVLM can compensate for the effects of RVLM inhibition. In addition, the effects of lidocaine suggest that fibers passing through the RVLM are involved in the maintenance of blood pressure in conscious animals during RVLM inhibition.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Dipyrone administered intravenously (iv) or intracerebroventricularly (icv) delays gastric emptying (GE) in rats. Gamma-aminobutyric acid (GABA) is the most potent inhibitory neurotransmitter of the central nervous system. The objective of the present study was to determine the effect of icv baclofen, a GABA B receptor agonist, on delayed GE induced by dipyrone. Adult male Wistar rats received a saline test meal containing phenol red as a marker. GE was indirectly evaluated by determining the percent of gastric retention (%GR) of the meal 10 min after orogastric administration. In the first experiment, the animals were injected iv with vehicle (Civ) or 80 mg/kg (240 µmol/kg) dipyrone (Dp iv), followed by icv injection of 10 µl vehicle (bac0), or 0.5 (bac0.5), 1 (bac1) or 2 µg (bac2) baclofen. In the second experiment, the animals were injected icv with 5 µl vehicle (Cicv) or an equal volume of a solution containing 4 µmol (1333.2 µg) dipyrone (Dp icv), followed by 5 µl vehicle (bac0) or 1 µg baclofen (bac1). GE was determined 10 min after icv injection. There was no significant difference between control animals from one experiment to another concerning GR values. Baclofen at the doses of 1 and 2 µg significantly reduced mean %GR induced by iv dipyrone (Dp iv bac1 = 35.9% and Dp iv bac2 = 26.9% vs Dp iv bac0 = 51.8%). Similarly, baclofen significantly reduced the effect of dipyrone injected icv (mean %GR: Dp icv bac1 = 30.4% vs Dp icv bac0 = 54.2%). The present results suggest that dipyrone induces delayed GE through a route in the central nervous system that is blocked by the activation of GABA B receptors.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We investigated the effects of bilateral injections of the GABA receptor agonists muscimol (GABA A) and baclofen (GABA B) into the nucleus tractus solitarius (NTS) on the bradycardia and hypotension induced by iv serotonin injections (5-HT, 2 µg/rat) in awake male Holtzman rats. 5-HT was injected in rats with stainless steel cannulas implanted bilaterally in the NTS, before and 5, 15, and 60 min after bilateral injections of muscimol or baclofen into the NTS. The responses to 5-HT were tested before and after the injection of atropine methyl bromide. Muscimol (50 pmol/50 nl, N = 8) into the NTS increased basal mean arterial pressure (MAP) from 115 ± 4 to 144 ± 6 mmHg, did not change basal heart rate (HR) and reduced the bradycardia (-40 ± 14 and -73 ± 26 bpm at 5 and 15 min, respectively, vs -180 ± 20 bpm for the control) and hypotension (-11 ± 4 and -14 ± 4 mmHg, vs -40 ± 9 mmHg for the control) elicited by 5-HT. Baclofen (12.5 pmol/50 nl, N = 7) into the NTS also increased basal MAP, but did not change basal HR, bradycardia or hypotension in response to 5-HT injections. Atropine methyl bromide (1 mg/kg body weight) injected iv reduced the bradycardic and hypotensive responses to 5-HT injections. The stimulation of GABA A receptors in the NTS of awake rats elicits a significant increase in basal MAP and decreases the cardiac Bezold-Jarisch reflex responses to iv 5-HT injections.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Findings by our group have shown that the dorsolateral telencephalon of Gymnotus carapo sends efferents to the mesencephalic torus semicircularis dorsalis (TSd) and that presumably this connection is involved in the changes in electric organ discharge (EOD) and in skeletomotor responses observed following microinjections of GABA A antagonist bicuculline into this telencephalic region. Other studies have implicated the TSd or its mammalian homologue, the inferior colliculus, in defensive responses. In the present study, we explore the possible involvement of the TSd and of the GABA-ergic system in the modulation of the electric and skeletomotor displays. For this purpose, different doses of bicuculline (0.98, 0.49, 0.245, and 0.015 mM) and muscimol (15.35 mM) were microinjected (0.1 µL) in the TSd of the awake G. carapo. Microinjection of bicuculline induced dose-dependent interruptions of EOD and increased skeletomotor activity resembling defense displays. The effects of the two highest doses showed maximum values at 5 min (4.3 ± 2.7 and 3.8 ± 2.0 Hz, P < 0.05) and persisted until 10 min (11 ± 5.7 and 8.7 ± 5.2 Hz, P < 0.05). Microinjections of muscimol were ineffective. During the interruptions of EOD, the novelty response (increased frequency in response to sensory novelties) induced by an electric stimulus delivered by a pair of electrodes placed in the water of the experimental cuvette was reduced or abolished. These data suggest that the GABA-ergic mechanisms of the TSd inhibit the neural substrate of the defense reaction at this midbrain level.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We investigated the involvement of GABAergic mechanisms of the central amygdaloid nucleus (CeA) in unanesthetized rats subjected to acute isotonic or hypertonic blood volume expansion (BVE). Male Wistar rats bearing cannulas unilaterally implanted in the CeA were treated with vehicle, muscimol (0.2 nmol/0.2 µL) or bicuculline (1.6 nmol/0.2 µL) in the CeA, followed by isotonic or hypertonic BVE (0.15 or 0.3 M NaCl, 2 mL/100 g body weight over 1 min). The vehicle-treated group showed an increase in sodium excretion, urinary volume, plasma oxytocin (OT), and atrial natriuretic peptide (ANP) levels compared to control rats. Muscimol reduced the effects of BVE on sodium excretion (isotonic: 2.4 ± 0.3 vs vehicle: 4.8 ± 0.2 and hypertonic: 4.0 ± 0.7 vs vehicle: 8.7 ± 0.6 µEq·100 g-1·40 min-1); urinary volume after hypertonic BVE (83.8 ± 10 vs vehicle: 255.6 ± 16.5 µL·100 g-1·40 min-1); plasma OT levels (isotonic: 15.3 ± 0.6 vs vehicle: 19.3 ± 1 and hypertonic: 26.5 ± 2.6 vs vehicle: 48 ± 3 pg/mL), and ANP levels (isotonic: 97 ± 12.8 vs vehicle: 258.3 ± 28.1 and hypertonic: 160 ± 14.6 vs vehicle: 318 ± 16.3 pg/mL). Bicuculline reduced the effects of isotonic or hypertonic BVE on urinary volume and ANP levels compared to vehicle-treated rats. However, bicuculline enhanced the effects of hypertonic BVE on plasma OT levels. These data suggest that CeA GABAergic mechanisms are involved in the control of ANP and OT secretion, as well as in sodium and water excretion in response to isotonic or hypertonic blood volume expansion.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Electrical stimulation has been used for more than 100 years in neuroscientific and biomedical research as a powerful tool for controlled perturbations of neural activity. Despite quickly driving neuronal activity, this technique presents some important limitations, such as the impossibility to activate or deactivate specific neuronal populations within a single stimulation site. This problem can be avoided by pharmacological methods based on the administration of receptor ligands able to cause specific changes in neuronal activity. However, intracerebral injections of neuroactive molecules inherently confound the dynamics of drug diffusion with receptor activation. Caged compounds have been proposed to circumvent this problem, for spatially and temporally controlled release of molecules. Caged compounds consist of a protecting group and a ligand made inactive by the bond between the two parts. By breaking this bond with light of an appropriate wavelength, the ligand recovers its activity within milliseconds. To test these compounds in vivo, we recorded local field potentials (LFPs) from the cerebral cortex of anesthetized female mice (CF1, 60-70 days, 20-30 g) before and after infusion with caged γ-amino-butyric-acid (GABA). After 30 min, we irradiated the cortical surface with pulses of blue light in order to photorelease the caged GABA and measure its effect on global brain activity. Laser pulses significantly and consistently decreased LFP power in four different frequency bands with a precision of few milliseconds (P < 0.000001); however, the inhibitory effects lasted several minutes (P < 0.0043). The technical difficulties and limitations of neurotransmitter photorelease are presented, and perspectives for future in vivo applications of the method are discussed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We investigated the GABA-induced inactivation of V2 neurons and terminals on the receptive field properties of this area in an anesthetized and paralyzedCebus apella monkey. Extracellular single-unit activity was recorded using tungsten microelectrodes in a monkey before and after pressure-injection of a 0.25 or 0.5 M GABA solution. The visual stimulus consisted of a bar moving in 8 possible directions. In total, 24 V2 neurons were studied before and after blocker injections in 4 experimental sessions following GABA injection into area V2. A group of 10 neurons were studied over a short period. An additional 6 neurons were investigated over a long period after the GABA injection. A third group of 8 neurons were studied over a very long period. Overall, these 24 neurons displayed an early (1-20 min) significant general decrease in excitability with concomitant changes in orientation or direction selectivity. GABA inactivation in area V2 produced robust inhibition in 80% and a significant change in directional selectivity in 60% of the neurons examined. These GABA projections are capable of modulating not only levels of spontaneous and driven activity of V2 neurons but also receptive field properties such as direction selectivity.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Abstract Germinated grains have been known as sources of Gamma-aminobutyric acid (GABA) that provide beneficial effects for human health. This study was aimed to investigate GABA production, dietary fiber, antioxidant activity, and the effect of cooking on GABA loss in germinated legumes and sesame. The highest GABA content was found in germinated mung bean, (0.8068 g kg-1, 24 h incubation) followed by germinated soybean, germinated black bean and soaked sesame. Beside GABA, dietary fiber content also increased in all grains during germination where the insoluble dietary fiber fractions were always found in higher proportions to soluble dietary fiber fractions. Our results also confirmed that germinated mung bean is a rich source of GABA and dietary fibers. Microwave cooking resulted in the smallest loss of GABA in mung bean and sesame, while steaming led to the least GABA content loss in soybean and black bean. Therefore microwave cooking and steaming are the most recommended cooking processes to preserve GABA in germinated legumes and sesame.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

O tratamento do zumbido é, ainda nos dias de hoje, um grande desafio para os otorrinolaringologistas. Várias lacunas persistem em sua fisiopatologia, tendo como resultado vários tipos de tratamento, com resultados muito irregulares. O acamprosato é uma droga utilizada no tratamento do alcoolismo, devido à sua ação reguladora da transmissão glutamatérgica e GABA-érgica, nunca tendo sido empregado no tratamento do zumbido. OBJETIVO: Avaliar a segurança e eficácia do uso do acamprosato, no tratamento do zumbido de causa neurossensorial. FORMA DE ESTUDO: ensaio clinico randomizado. MATERIAL E MÉTODO: 50 pacientes com zumbido de causa neurossensorial foram divididos em 2 grupos, 25 recebendo acamprosato e 25 placebo por 3 meses, em um estudo prospectivo duplo-cego, sendo analisados os efeitos terapêuticos e efeitos colaterais, de acordo com escala (nota) de 1 a 10, atribuída pelo próprio paciente. RESULTADOS: Foi observado algum grau de melhora sintomatológica em 86,9% dos pacientes, sendo que em 47,8% dos casos observamos melhora superior a 50%, dados estatisticamente significativos em relação ao placebo. A incidência de efeitos colaterais encontrada foi baixa (12%) e de intensidade leve, com boa tolerabilidade geral. CONCLUSÃO: O acamprosato, medicação utilizada no tratamento do alcoolismo, é eficaz e seguro para o tratamento do zumbido de causa neurossensorial, com percentual de melhora superior à maioria das medicações utilizadas para o tratamento do zumbido, constituindo uma excelente alternativa terapêutica.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Background: In pathological situations, such as acute myocardial infarction, disorders of motility of the proximal gut can trigger symptoms like nausea and vomiting. Acute myocardial infarction delays gastric emptying (GE) of liquid in rats. Objective: Investigate the involvement of the vagus nerve, α 1-adrenoceptors, central nervous system GABAB receptors and also participation of paraventricular nucleus (PVN) of the hypothalamus in GE and gastric compliance (GC) in infarcted rats. Methods: Wistar rats, N = 8-15 in each group, were divided as INF group and sham (SH) group and subdivided. The infarction was performed through ligation of the left anterior descending coronary artery. GC was estimated with pressure-volume curves. Vagotomy was performed by sectioning the dorsal and ventral branches. To verify the action of GABAB receptors, baclofen was injected via icv (intracerebroventricular). Intravenous prazosin was used to produce chemical sympathectomy. The lesion in the PVN of the hypothalamus was performed using a 1mA/10s electrical current and GE was determined by measuring the percentage of gastric retention (% GR) of a saline meal. Results: No significant differences were observed regarding GC between groups; vagotomy significantly reduced % GR in INF group; icv treatment with baclofen significantly reduced %GR. GABAB receptors were not conclusively involved in delaying GE; intravenous treatment with prazosin significantly reduced GR% in INF group. PVN lesion abolished the effect of myocardial infarction on GE. Conclusion: Gastric emptying of liquids induced through acute myocardial infarction in rats showed the involvement of the vagus nerve, alpha1- adrenergic receptors and PVN.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In rats pre-but not post-training ip administration of either flumazenil, a central benzodiazepine (BSD) receptor antagonist, or of n-butyl-B-carboline-carboxylate (BCCB), an inverse agonist, enhanced retention of inhibitory avoidance learning. Flumazenil vlocked the enhancing effect of BCCB, and the inhibitory effect of the BZD agonists clonazepam and diazepam also given pre-training. Post-training administration of these drugs had no effects. The peripheral BZD receptor agonist/chloride channel blocker Ro5-4864 had no effect on the inhibitory avoidance task when given ip prior to training, buth it caused enhancement when given immediately post-training either ip or icv. This effect was blocked by PK11195, a competitive antagonist of Ro5-4864. These results suggest that ther is an endogenous mechanism mediated by BZD agonists, which is sensitive to inverse agonists and that normally down-regulates the formation of memories through a mechanism involving GABA-A receptors and the corresponding chloride channels. The most likely agonists for the endogenous mechanism suggested are the diazepam-like BZDs found in brain whose origin is possibly alimentary. Levels of these BZDs in the cortex were found to sharply decrease after inhibitory acoidance training or mere exposure to the training apparatus.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In the field of anxiety research, animal models are used as screening tools in the search for compounds with therapeutic potential and as simulations for research on mechanisms underlying emotional behaviour. However, a solely pharmacological approach to the validation of such tests has resulted in distinct problems with their applicability to systems other than those involving the benzodiazepine/GABAA receptor complex. In this context, recent developments in our understanding of mammalian defensive behaviour have not only prompted the development of new models but also attempts to refine existing ones. The present review focuses on the application of ethological techniques to one of the most widely used animal models of anxiety, the elevated plus-maze paradigm. This fresh approach to an established test has revealed a hitherto unrecognized multidimensionality to plus-maze behaviour and, as it yields comprehensive behavioural profiles, has many advantages over conventional methodology. This assertion is supported by reference to recent work on the effects of diverse manipulations including psychosocial stress, benzodiazepines, GABA receptor ligands, neurosteroids, 5-HT1A receptor ligands, and panicolytic/panicogenic agents. On the basis of this review, it is suggested that other models of anxiety may well benefit from greater attention to behavioural detail

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The dorsal periaqueductal gray (DPAG) has been implicated in the behavioral and autonomic expression of defensive reactions. Several results suggest that, along with GABA, glutamate and serotonin, nitric oxide (NO) may play a role in defense reactions mediated by this region. To further investigate this possibility we microinjected methylene blue (MB; 10, 30 or 100 nmol/0.5 µl) into the DPAG of rats submitted to the elevated plus-maze test, an animal model of anxiety. MB has been used as an inhibitor of soluble guanylate cyclase (sGC) to demonstrate cGMP-mediated processes, and there is evidence that NO may exert its biological effects by binding to the heme part of guanylate cyclase, causing an increase in cGMP levels. The results showed that MB (30 nmol) significantly increased the percent of time spent in the open arms (saline = 11.57 ± 1.54, MB = 18.5 ± 2.45, P<0.05) and tended to do the same with the percentage of open arm entries (saline = 25.8 ± 1.97, MB = 33.77 ± 3.07, P<0.10), but did not change the number of enclosed arm entries. The dose-response curve, however, had an inverted U shape. These results indicate that MB, within a limited dose range, has anxiolytic properties when microinjected into the DPAG.