28 resultados para GaP
em Scielo Saúde Pública - SP
Resumo:
A habilidade auditiva de resolução temporal consiste no tempo mínimo requerido para segregar ou resolver eventos acústicos. Esta habilidade é fundamental para a compreensão da fala e pode ser avaliada por testes de detecção de gap. Alguns estudos apontam uma vantagem da orelha direita sobre a esquerda em tarefas de resolução temporal, já que existe um papel preferencial do hemisfério esquerdo na análise dos aspectos temporais do estímulo acústico. OBJETIVO: Determinar se existem diferenças de resposta (limiares de detecção de gap e porcentagem de acertos) entre as orelhas direita e esquerda para um teste de detecção de gap. Forma de Estudo: Experimental. MATERIAL E MÉTODO: O teste de detecção de gap foi aplicado em 100 indivíduos adultos, após a realização de outros testes audiológicos para descartar possíveis alterações auditivas e/ou do processamento auditivo. RESULTADOS: Foram observados limiares de detecção de gap e porcentagens médias de acertos semelhantes para as orelhas direita e esquerda, independente da orelha de início do teste. CONCLUSÃO: Não houve vantagem de uma orelha sobre a outra na tarefa de detecção de gap.
Resumo:
This article analyzes the climate policy performance of the G-8 from 1992 to 2012 based on their legal commitments (Annex-1 and Annex-B countries) under the UNFCCC (1992) and the Kyoto Protocol (1997) and their policy declarations on their GHG reduction goals until 2050. A climate paradox has emerged due to a growing implementation gap in Canada, USA and Japan, while Russia, Germany, UK, France and Italy fulfilled their GHG reduction obligation.
Resumo:
Gap junction connexin-43 (Cx43) molecules are responsible for electrical impulse conduction in the heart and are affected by transforming growth factor-β (TGF-β). This cytokine increases during Trypanosoma cruzi infection, modulating fibrosis and the parasite cell cycle. We studied Cx43 expression in cardiomyocytes exposed or not to TGF-β T. cruzi, or SB-431542, an inhibitor of TGF-β receptor type I (ALK-5). Cx43 expression was also examined in hearts with dilated cardiopathy from chronic Chagas disease patients, in which TGF-β signalling had been shown previously to be highly activated. We demonstrated that TGF-β treatment induced disorganised gap junctions in non-infected cardiomyocytes, leading to a punctate, diffuse and non-uniform Cx43 staining. A similar pattern was detected in T. cruzi-infected cardiomyocytes concomitant with high TGF-β secretion. Both results were reversed if the cells were incubated with SB-431542. Similar tests were performed using human chronic chagasic patients and we confirmed a down-regulation of Cx43 expression, an altered distribution of plaques in the heart and a significant reduction in the number and length of Cx43 plaques, which correlated negatively with cardiomegaly. We conclude that elevated TGF-β levels during T. cruzi infection promote heart fibrosis and disorganise gap junctions, possibly contributing to abnormal impulse conduction and arrhythmia that characterise severe cardiopathy in Chagas disease.
Resumo:
The characterization of different ecological groups in a forest formation/succession is unclear. To better define the different successional classes, we have to consider ecophysiological aspects, such as the capacity to use or dissipate the light energy available. The main objective of this work was to assess the chlorophyll fluorescence emission of tropical tree species growing in a gap of a semi-deciduous forest. Three species of different ecological groups were selected: Croton floribundus Spreng. (pioneer, P), Astronium graveolens Jacq. (early secondary, Si), and Esenbeckia febrifuga A. Juss. (late secondary, St). The potential (Fv/Fm) and effective (deltaF/Fm') quantum efficiency of photosystem II, apparent electron transport rate (ETR), non-photochemical (qN) and photochemical (qP) quenching of fluorescence were evaluated, using a modulated fluorometer, between 7:30 and 11:00 h. Values of Fv/Fm remained constant in St, decreasing in P and Si after 9:30 h, indicating the occurrence of photoinhibition. Concerning the measurements taken under light conditions (deltaF/Fm', ETR, qP and qN), P and Si showed better photochemical performance, i.e., values of deltaF/Fm', ETR and qP were higher than St when light intensity was increased. Values of qN indicated that P and Si had an increasing tendency of dissipating the excess of energy absorbed by the leaf, whereas the opposite was found for St. The principal component analysis (PCA), considering all evaluated parameters, showed a clear distinction between St, P and Si, with P and Si being closer. The PCA results suggest that chlorophyll fluorescence may be a potential tool to differentiate tree species from distinct successional groups.
Resumo:
Foi avaliado o comportamento da osmolaridade, do ânion gap, do pH e dos íons plasmáticos mensuráveis de 14 equinos, 9 machos e 5 fêmeas, Puro Sangue Árabe finalistas em provas de enduro de 90 km. Para tanto, foram colhidas em dois momentos (repouso e após o exercício prolongado) amostras de sangue venoso para a mensuração dessas variáveis. Pode-se verificar, a partir do repouso, aumento significativo dos valores do Hct, das PPT e do AG, sugerindo perda de fluidos e discreto grau de desidratação. O pH e o íon H+ quase não se alteraram, indicando ausência de distúrbios metabólicos. Reduções com diferenças significativas foram observadas para os íons Cl-, HCO3-, K+, Ca++, assim como do EB. Pode-se então, sugerir que o tipo de exercício a que os animais foram submetidos foi compatível com a capacidade atlética e ainda que a suplementação durante a competição contribuísse para minimizar tais perdas.
Resumo:
Leaf CO2 assimilation (A) as a function of photosynthetic photon flux density (Q) or intercellular CO2 concentration (Ci) and chlorophyll fluorescence measurements were carried out on four tropical woody species growing in forest gap and understorey (Bauhinia forficata Link. and Guazuma ulmifolia Lam. as pioneers, and Hymenaea courbaril L. and Esenbeckia leiocarpa Engl. as non-pioneers). Chlorophyll fluorescence indicated similar acclimation capacities of photochemical apparatus to contrasting light environments irrespective to plant species. Maximum CO2 assimilation and quantum yield derived from A/Q curves indicated higher photosynthetic capacity in pioneer than in non-pioneer species in forest gap. However, the differences among species did not show a straightforward relation with their successional status regarding data derived from A/Q curves under understorey conditions. Both successional groups are able to sustain positive carbon balance under contrasting natural light availabilities, modifying photochemical and biochemical photosynthetic traits with similar phenotypic plasticity capacity.
Resumo:
Most cells exchange ions and small metabolites via gap junction channels. These channels are made of two hemichannels (connexons), each formed by the radial arrangement of six connexin (Cx) proteins. Connexins span the bilayer four times (M1-M4) and have both amino- and carboxy-termini (NT, CT) at the cytoplasmic side of the membrane, forming two extracellular loops (E1, E2) and one inner (IL) loop. The channels are regulated by gates that close with cytosolic acidification (e.g., CO2 treatment) or increased calcium concentration, possibly via calmodulin activation. Although gap junction regulation is still unclear, connexin domains involved in gating are being defined. We have recently focused on the CO2 gating sensitivity of Cx32, Cx38 and various mutants and chimeras expressed in Xenopus oocytes and studied by double voltage clamp. Cx32 is weakly sensitive to CO2, whereas Cx38 is highly sensitive. A Cx32 chimera containing the second half of the inner loop (IL2) of Cx38 was as sensitive to CO2 as Cx38, indicating that this domain plays an important role. Deletion of CT by 84% did not affect CO2 sensitivity, but replacement of 5 arginines (R) with sparagines (N) at the beginning of CT (C1) greatly enhanced the CO2 sensitivity of Cx32. This suggests that whereas most of CT is irrelevant, positive charges of C1 maintain the CO2 sensitivity of Cx32 low. As a hypothesis we have proposed a model that involves charge interaction between negative residues of the beginning of IL1 and positive residues of either C1 or IL2. Open and closed channels would result from IL1-C1 and IL1-IL2 interactions, respectively
Resumo:
Gap junctions are constituted by intercellular channels and provide a pathway for transfer of ions and small molecules between adjacent cells of most tissues. The degree of intercellular coupling mediated by gap junctions depends on the number of gap junction channels and their activity may be a function of the state of phosphorylation of connexins, the structural subunit of gap junction channels. Protein phosphorylation has been proposed to control intercellular gap junctional communication at several steps from gene expression to protein degradation, including translational and post-translational modification of connexins (i.e., phosphorylation of the assembled channel acting as a gating mechanism) and assembly into and removal from the plasma membrane. Several connexins contain sites for phosphorylation for more than one protein kinase. These consensus sites vary between connexins and have been preferentially identified in the C-terminus. Changes in intercellular communication mediated by protein phosphorylation are believed to control various physiological tissue and cell functions as well as to be altered under pathological conditions.
Resumo:
It is well known that saccadic reaction times (SRT) are reduced when the target is preceded by the offset of the fixation point (FP) - the gap effect. Some authors have proposed that the FP offset also allows the saccadic system to generate a separate population of SRT, the express saccades. Nevertheless, there is no agreement as to whether the gap effect and express responses are also present for manual reaction times (MRT). We tested the gap effect and the MRT distribution in two different conditions, i.e., simple and choice MRT. In the choice MRT condition, subjects need to identify the side of the stimulus and to select the appropriate response, while in the simple MRT these stages are not necessary. We report that the gap effect was present in both conditions (22 ms for choice MRT condition; 15 ms for simple MRT condition), but, when analyzing the MRT distributions, we did not find any clear evidence for express manual responses. The main difference in MRT distribution between simple and choice conditions was a shift towards shorter values for simple MRT.
Resumo:
Gap junctions are clusters of intercellular channels directly connecting the cytoplasm of adjacent cells. These channels are formed by proteins named connexins and are present in all metazoan organisms where they serve diverse functions ranging from control of cell growth and differentiation to electric conduction in excitable tissues. In this overview we describe the presence of connexins in the cardiovascular and lympho-hematopoietic systems giving the reader a summary of the topics to be covered throughout this edition and a historical perspective of the discovery of gap junctions in the immune system.
Resumo:
The role gap junction channels play in the normal and abnormal functioning of the vascular wall is the subject of much research. The biophysical properties of gap junctions are an essential component in understanding how gap junctions function to allow coordinated relaxation and contraction of vascular smooth muscle. This study reviews the properties thus far elucidated and relates those properties to tissue function. We ask how biophysical and structural properties such as gating, permselectivity, subconductive states and channel type (heteromeric vs homotypic vs heterotypic) might affect vascular smooth muscle tone.
Resumo:
Connexin43 (Cx43) is a major gap junction protein present in the Fischer-344 rat aorta. Previous studies have identified conditions under which selective disruption of intercellular communication with heptanol caused a significant, readily reversible and time-dependent diminution in the magnitude of a1-adrenergic contractions in isolated rat aorta. These observations have indentified a significant role for gap junctions in modulating vascular smooth muscle tone. The goal of these steady-state studies was to utilize isolated rat aortic rings to further evaluate the contribution of intercellular junctions to contractions elicited by cellular activation in response to several other vascular spasmogens. The effects of heptanol were examined (0.2-2.0 mM) on equivalent submaximal (»75% of the phenylephrine maximum) aortic contractions elicited by 5-hydroxytryptamine (5-HT; 1-2 µM), prostaglandin F2a (PGF2a; 1 µM) and endothelin-1 (ET-1; 20 nM). Statistical analysis revealed that 200 µM and 500 µM heptanol diminished the maximal amplitude of the steady-state contractile responses for 5-HT from a control response of 75 ± 6% (N = 26 rings) to 57 ± 7% (N = 26 rings) and 34.9 ± 6% (N = 13 rings), respectively (P<0.05), and for PGF2a from a control response of 75 ± 10% (N = 16 rings) to 52 ± 8% (N = 19 rings) and 25.9 ± 6% (N = 18 rings), respectively (P<0.05). In contrast, 200 µM and 500 µM heptanol had no detectable effect on the magnitude of ET-1-induced contractile responses, which were 76 ± 5.0% for the control response (N = 38 rings), 59 ± 6.0% in the presence of 200 µM heptanol (N = 17 rings), and 70 ± 6.0% in the presence of 500 µM heptanol (N = 23 rings) (P<0.13). Increasing the heptanol concentration to 1 mM was associated with a significant decrease in the magnitude of the steady-state ET-1-induced contractile response to 32 ± 5% (21 rings; P<0.01); further increasing the heptanol concentration to 2 mM had no additional effect. In rat aorta then, junctional modulation of tissue contractility appears to be agonist-dependent.
Resumo:
Gap junction channels are sites of cytoplasmic communication between contacting cells. In vertebrates, they consist of protein subunits denoted connexins (Cxs) which are encoded by a gene family. According to their Cx composition, gap junction channels show different gating and permeability properties that define which ions and small molecules permeate them. Differences in Cx primary sequences suggest that channels composed of different Cxs are regulated differentially by intracellular pathways under specific physiological conditions. Functional roles of gap junction channels could be defined by the relative importance of permeant substances, resulting in coordination of electrical and/or metabolic cellular responses. Cells of the native and specific immune systems establish transient homo- and heterocellular contacts at various steps of the immune response. Morphological and functional studies reported during the last three decades have revealed that many intercellular contacts between cells in the immune response present gap junctions or "gap junction-like" structures. Partial characterization of the molecular composition of some of these plasma membrane structures and regulatory mechanisms that control them have been published recently. Studies designed to elucidate their physiological roles suggest that they might permit coordination of cellular events which favor the effective and timely response of the immune system.
Resumo:
Gap junctions are intercellular channels which connect adjacent cells and allow direct exchange of molecules of low molecular weight between them. Such a communication has been described as fundamental in many systems due to its importance in coordination, proliferation and differentiation. Recently, it has been shown that gap junctional intercellular communication (GJIC) can be modulated by several extracellular soluble factors such as classical hormones, neurotransmitters, interleukins, growth factors and some paracrine substances. Herein, we discuss some aspects of the general modulation of GJIC by extracellular messenger molecules and more particularly the regulation of such communication in the thymus gland. Additionally, we discuss recent data concerning the study of different neuropeptides and hormones in the modulation of GJIC in thymic epithelial cells. We also suggest that the thymus may be viewed as a model to study the modulation of gap junction communication by different extracellular messengers involved in non-classical circuits, since this organ is under bidirectional neuroimmunoendocrine control.