2 resultados para GWR
em Scielo Saúde Pública - SP
Resumo:
Abstract: INTRODUCTION: Geographic information systems (GIS) enable public health data to be analyzed in terms of geographical variability and the relationship between risk factors and diseases. This study discusses the application of the geographic weighted regression (GWR) model to health data to improve the understanding of spatially varying social and clinical factors that potentially impact leprosy prevalence. METHODS: This ecological study used data from leprosy case records from 1998-2006, aggregated by neighborhood in the Duque de Caxias municipality in the State of Rio de Janeiro, Brazil. In the GWR model, the associations between the log of the leprosy detection rate and social and clinical factors were analyzed. RESULTS: Maps of the estimated coefficients by neighborhood confirmed the heterogeneous spatial relationships between the leprosy detection rates and the predictors. The proportion of households with piped water was associated with higher detection rates, mainly in the northeast of the municipality. Indeterminate forms were strongly associated with higher detections rates in the south, where access to health services was more established. CONCLUSIONS: GWR proved a useful tool for epidemiological analysis of leprosy in a local area, such as Duque de Caxias. Epidemiological analysis using the maps of the GWR model offered the advantage of visualizing the problem in sub-regions and identifying any spatial dependence in the local study area.
Resumo:
ABSTRACT The spatial distribution of forest biomass in the Amazon is heterogeneous with a temporal and spatial variation, especially in relation to the different vegetation types of this biome. Biomass estimated in this region varies significantly depending on the applied approach and the data set used for modeling it. In this context, this study aimed to evaluate three different geostatistical techniques to estimate the spatial distribution of aboveground biomass (AGB). The selected techniques were: 1) ordinary least-squares regression (OLS), 2) geographically weighted regression (GWR) and, 3) geographically weighted regression - kriging (GWR-K). These techniques were applied to the same field dataset, using the same environmental variables derived from cartographic information and high-resolution remote sensing data (RapidEye). This study was developed in the Amazon rainforest from Sucumbíos - Ecuador. The results of this study showed that the GWR-K, a hybrid technique, provided statistically satisfactory estimates with the lowest prediction error compared to the other two techniques. Furthermore, we observed that 75% of the AGB was explained by the combination of remote sensing data and environmental variables, where the forest types are the most important variable for estimating AGB. It should be noted that while the use of high-resolution images significantly improves the estimation of the spatial distribution of AGB, the processing of this information requires high computational demand.