70 resultados para GRAM-POSITIVE BACTERIA
em Scielo Saúde Pública - SP
Resumo:
Antibacterial effects of aqueous and ethanolic extracts of seeds of moringa (Moringa oleifera) and pods of soursop (Annona muricata) in the concentration of 1:5 and 1:10 in volumes 50, 100, 150 and 200 µL were examined against Staphylococcus aureus, Vibrio cholerae, Escherichia coli (isolated from the organism and the aquatic environment) and Salmonella Enteritidis. Antibacterial activity (inhibition halo > 13 mm) against S. aureus, V. cholerae and E. coli isolated from the whiteleg shrimp, Litopenaeus vannmaei, was detected in aqueous and ethanolic extracts of moringa. E. coli isolated from tilapiafish, Oreochromis niloticus, was sensitive to the ethanolic extract of moringa. The aqueous extracts of soursop showed an antibacterial effect against S. aureus and V. cholerae, but the antibacterial activity by the ethanol extracts of this plant was not demonstrated.
Resumo:
Introduction. The genera Enterococcus, Staphylococcus and Streptococcus are recognized as important Gram-positive human pathogens. The aim of this study was to evaluate the performance of Vitek 2 in identifying Gram-positive cocci and their antimicrobial susceptibilities. Methods. One hundred four isolates were analyzed to determine the accuracy of the automated system for identifying the bacteria and their susceptibility to oxacillin and vancomycin. Results. The system correctly identified 77.9% and 97.1% of the isolates at the species and genus levels, respectively. Additionally, 81.8% of the Vitek 2 results agreed with the known antimicrobial susceptibility profiles. Conclusion. Vitek 2 correctly identified the commonly isolated strains; however, the limitations of the method may lead to ambiguous findings.
Resumo:
Baccharis trimera (Less.) (Asteraceae), popularly know as "carqueja", is a species commonly used in folk medicine for the treatment or prevention of diseases. In this context, the purpose of this work was to study the antibacterial activity of crude hydroalcoholic extract from Baccharis trimera against Gram-positive bacterial strains (Staphylococcus aureus ATCC 29213, Staphylococcus saprophyticus ATCC 15305, Staphylococcus epidermidis ATCC 12228, Enterococcus faecalis ATCC 19433) and Gram-negative bacteria (Escherichia coli EHEC ATCC 43895, Pseudomonas aeruginosa ATCC 27853, Klebsiella pneumoniae ATCC 27736, Salmonella typhi ATCC 19430) of clinical interest. Antibacterial susceptibility was evaluated by broth microdilution assay following the CLSI (formerly the NCCLS) guidelines. The extract from B. trimera showed antibacterial activity against Gram-positive bacteria and the most interesting result was obtained against S. epidermidis that presented Minimal Inhibitory Concentration of 250μg/mL. These results indicate that B. trimera have bacterisostatic potential against Gram-positive bacterial strains of medical interest and could serve as a base for further studies on the use of isolated compounds from this species as future antimicrobials.
Resumo:
Introduction Acinetobacter baumannii has attained an alarming level of resistance to antibacterial drugs. Clinicians are now considering the use of older agents or unorthodox combinations of licensed drugs against multidrug-resistant strains to bridge the current treatment gap. We investigated the in vitro activities of combination treatments that included colistin with vancomycin, norvancomycin or linezolid against multidrug-resistant Acinetobacter baumannii. Methods The fractional inhibitory concentration index and time-kill assays were used to explore the combined effects of colistin with vancomycin, norvancomycin or linezolid against 40 clinical isolates of multidrug-resistant Acinetobacter baumannii. Transmission electron microscopy was performed to evaluate the interactions in response to the combination of colistin and vancomycin. Results The minimum inhibitory concentrations (MICs) of vancomycin and norvancomycin for half of the isolates decreased below the susceptibility break point, and the MIC of linezolid for one isolate was decreased to the blood and epithelial lining fluid concentration using the current dosing regimen. When vancomycin or norvancomycin was combined with subinhibitory doses of colistin, the multidrug-resistant Acinetobacter baumannii test samples were eradicated. Transmission electron microscopy revealed that subinhibitory doses of colistin were able to disrupt the outer membrane, facilitating a disruption of the cell wall and leading to cell lysis. Conclusions Subinhibitory doses of colistin significantly enhanced the antibacterial activity of vancomycin, norvancomycin, and linezolid against multidrug-resistant Acinetobacter baumannii.
Resumo:
ABSTRACTINTRODUCTION: Monte Carlo simulations have been used for selecting optimal antibiotic regimens for treatment of bacterial infections. The aim of this study was to assess the pharmacokinetic and pharmacodynamic target attainment of intravenous β-lactam regimens commonly used to treat bloodstream infections (BSIs) caused by Gram-negative rod-shaped organisms in a Brazilian teaching hospital.METHODS: In total, 5,000 patients were included in the Monte Carlo simulations of distinct antimicrobial regimens to estimate the likelihood of achieving free drug concentrations above the minimum inhibitory concentration (MIC; fT > MIC) for the requisite periods to clear distinct target organisms. Microbiological data were obtained from blood culture isolates harvested in our hospital from 2008 to 2010.RESULTS: In total, 614 bacterial isolates, including Escherichia coli, Enterobacterspp., Klebsiella pneumoniae, Acinetobacter baumannii, and Pseudomonas aeruginosa, were analyzed Piperacillin/tazobactam failed to achieve a cumulative fraction of response (CFR) > 90% for any of the isolates. While standard dosing (short infusion) of β-lactams achieved target attainment for BSIs caused by E. coliand Enterobacterspp., pharmacodynamic target attainment against K. pneumoniaeisolates was only achieved with ceftazidime and meropenem (prolonged infusion). Lastly, only prolonged infusion of high-dose meropenem approached an ideal CFR against P. aeruginosa; however, no antimicrobial regimen achieved an ideal CFR against A. baumannii.CONCLUSIONS:These data reinforce the use of prolonged infusions of high-dose β-lactam antimicrobials as a reasonable strategy for the treatment of BSIs caused by multidrug resistant Gram-negative bacteria in Brazil.
Resumo:
Animals (122 mice) were infected each with eighty cercariae of S. mansoni and subsequently challenged intravenously eight weeks later with the following gram-negative organisms. S. typhi, E. coli, Klebsiella-enterobacter species, Proteus mirabilis and Pseudomonas aeruginosa. Enumeration of bacteria in the liver, spleen and blood and S. mansoni from the portal sistem was performed from one to four weeks later in infected animals. A significant difference between infection produced by S. typhi and other gram negative organisms was observed: S. typhi persisted longer in the spleen and liver and could be recovered from S. mansoni worms up to three weeks following bacterial infection. Other gram negative bacteria disappeared from S. mansoni worms after two weeks of initial challenge. Additional animals (51 mice) infected with S. mansoni were given S. typhi, E. coli or sterile saline. After two weeks, animals were sacrificed and the recovery rate of worms from the portal system, and the mesenteric and hepatic oogram were determined. in animals infected with E. coli a significant decrease in the number of worms was observed compared to the saline control group; thirty worms were recovered in the control group compared to two worms in e. coli infected animals. In addition, the patterns of oviposition was significantly different in these latter animals suggesting complete inhibition of this process. Following S. typhi infection the difference in recovery of worms and pattern of oviposition was minimal. These findings suggest a difference in the interaction of various gram negative bacteria and S. mansoni and are consistent with the clinical observation of prolonged salmonella bacteremia in patients with schistosomiasis.
Resumo:
Multi-resistant gram-negative rods are important pathogens in intensive care units (ICU), cause high rates of mortality, and need infection control measures to avoid spread to another patients. This study was undertaken prospectively with all of the patients hospitalized at ICU, Anesthesiology of the Hospital São Paulo, using the ICU component of the National Nosocomial Infection Surveillance System (NNIS) methodology, between March 1, 1997 and June 30, 1998. Hospital infections occurring during the first three months after the establishment of prevention and control measures (3/1/97 to 5/31/97) were compared to those of the last three months (3/1/98 to 5/31/98). In this period, 933 NNIS patients were studied, with 139 during the first period and 211 in the second period. The overall rates of infection by multi-resistant microorganisms in the first and second periods were, respectively, urinary tract infection: 3.28/1000 patients/day; 2.5/1000 patients/day; pneumonia: 2.10/1000 patients/day; 5.0/1000 patients/day; bloodstream infection: 1.09/1000 patients/day; 2.5/1000 patients/day. A comparison between overall infection rates of both periods (Wilcoxon test) showed no statistical significance (p = 0.067). The use of intervention measures effectively decreased the hospital bloodstream infection rate (p < 0.001), which shows that control measures in ICU can contribute to preventing hospital infections.
Resumo:
A lectin isolated from the red alga Solieria filiformis was evaluated for its effect on the growth of 8 gram-negative and 3 gram-positive bacteria cultivated in liquid medium (three independent experiments/bacterium). The lectin (500 µg/mL) stimulated the growth of the gram-positive species Bacillus cereus and inhibited the growth of the gram-negative species Serratia marcescens, Salmonella typhi, Klebsiella pneumoniae, Enterobacter aerogenes, Proteus sp, and Pseudomonas aeruginosa at 1000 µg/mL but the lectin (10-1000 µg/mL) had no effect on the growth of the gram-positive bacteria Staphylococcus aureus and B. subtilis, or on the gram-negative bacteria Escherichia coli and Salmonella typhimurium. The purified lectin significantly reduced the cell density of gram-negative bacteria, although no changes in growth phases (log, exponential and of decline) were observed. It is possible that the interaction of S. filiformis lectin with the cell surface receptors of gram-negative bacteria promotes alterations in the flow of nutrients, which would explain the bacteriostatic effect. Growth stimulation of the gram-positive bacterium B. cereus was more marked in the presence of the lectin at a concentration of 1000 µg/mL. The stimulation of the growth of B. cereus was not observed when the lectin was previously incubated with mannan (125 µg/mL), its hapten. Thus, we suggest the involvement of the binding site of the lectin in this effect. The present study reports the first data on the inhibition and stimulation of pathogenic bacterial cells by marine alga lectins.
Resumo:
To determine parameters associated with the evolution of sepsis, a five-year retrospective study was conducted in a university hospital. One hundred and four consecutive sepsis patients were evaluated, of whom 55.8% were men. The mortality was 68.3% and was associated with older age (p<0.05). Chronic comorbidities and infection site were not associated with prognosis. Gram-positive bacteria were more frequently identified in survivors (p<0.05), while non-detection of the germ was associated with mortality (p<0.01). Appropriate use of antibiotics (germ sensitive to at least one drug administered) was associated with survival (p<0.0001) while inappropriate use (p<0.05) or empirical use (p<0.01) were more frequent in nonsurvivors. Leukocytosis was the main abnormality (54.8%) detected on diagnosis, from the leukocyte count. During the evolution, normal leukocyte count was associated with survival (p<0.01) and leukocytosis with mortality (p<0.05). In conclusion, mortality was associated with nondetection of the pathogen, leukocytosis during the evolution of the sepsis and inappropriate or empirical use of antimicrobials. Evidence-based treatment that is directed towards modifiable risk factors might improve the prognosis for sepsis patients.
Resumo:
ABSTRACTINTRODUCTION: This study aimed to determine the frequencies of bacterial isolates cultured from diabetic foot infections and assess their resistance and susceptibility to commonly used antibiotics.METHODS: This prospective study included 41 patients with diabetic foot lesions. Bacteria were isolated from foot lesions, and their antibiotic susceptibility pattern was determined using the Kirby-Bauer disk diffusion method and/or broth method [minimum inhibitory concentration (MIC)].RESULTS: The most common location of ulceration was the toe (54%), followed by the plantar surface (27%) and dorsal portion (19%). A total of 89 bacterial isolates were obtained from 30 patients. The infections were predominantly due to Gram-positive bacteria and polymicrobial bacteremia. The most commonly isolated Gram-positive bacteria were Staphylococcus aureus, followed by Staphylococcus saprophyticus, Staphylococcus epidermidis, Streptococcus agalactiae, and Streptococcus pneumoniae. The most commonly isolated Gram-negative bacteria were Proteus spp. and Enterobacterspp., followed by Escherichia coli, Pseudomonasspp., and Citrobacterspp. Nine cases of methicillin-resistant Staphylococcus aureus (MRSA) had cefoxitin resistance, and among these MRSA isolates, 3 were resistant to vancomycin with the MIC technique. The antibiotic imipenem was the most effective against both Gram-positive and Gram-negative bacteria, and gentamicin was effective against Gram-negative bacteria.CONCLUSIONS: The present study confirmed the high prevalence of multidrug-resistant pathogens in diabetic foot ulcers. It is necessary to evaluate the different microorganisms infecting the wound and to know the antibiotic susceptibility patterns of the isolates from the infected wound. This knowledge is crucial for planning treatment with the appropriate antibiotics, reducing resistance patterns, and minimizing healthcare costs.
Resumo:
Opportunistic infections, which affect acquired immunodeficiency syndrome (Aids) patients, are frequently disseminated and may cause bloodstream infections (BSI). The aim of this study was to evaluate the main causes of BSI in Aids patients with advanced stage of the disease, with special emphasis on the identification of fungemia. During a 21 months period, all patients with Aids (CD4 < 200) and febrile syndrome admitted to 3 university hospitals were systematically evaluated. For each patient presenting fever, a pair of blood cultures was collected and processed by using a commercial lysis-centrifugation system. One hundred and eleven patients (75 males) with a mean age of 36 years (median 33 years) and mean CD4 count of 64 cells/ml were included. Among the 111 patients evaluated we documented 54 episodes of BSI, including 46 patients with truly systemic infections and 8 episodes considered as contaminants. BSI were caused by gram-positive bacteria (43%), fungi (20%), gram-negative bacteria (15%), mycobacteria (15%), and mixed flora (7%). The crude mortality rate of our patients was 39%, being 50% for patients with BSI and 31% for the others. In conclusion, BSI are a common related to systemic infections on Aids patients with advanced stage of disease and is associated with a high rate of mortality.
Resumo:
The evaluation of the activity of the aqueous and ethyl acetate extracts of the leaves of Piper regnellii was tested against gram-positive and gram-negative bacteria. The aqueous extractdisplayed a weak activity against Staphylococcus aureus and Bacillus subtilis with minimal inhibitory concentration (MIC) and minimal bactericidal concentration (MBC) of 1000 µg/ml. The ethyl acetate extract presented a good activity against S. aureus and B. subtilis with MIC and MBC at 15.62 µg/ml. In contrast to the relative low MICs for gram-positive bacteria, gram-negative bacteria were not inhibited by the extracts at concentrations < 1000 mg/ml. The ethyl acetate extract was fractionated on silica gel into nine fractions. The hexane and chloroform fractions were active against S. aureus (MIC at 3.9 µg/ml) and B. subtilis (MIC at 3.9 and 7.8 µg/ml, respectively). Using bioactivity-directed fractionation, the hexane fraction was rechromatographed to yield the antimicrobial compounds 1, 2, 5, and 6identified as eupomatenoid-6, eupomatenoid-5, eupomatenoid-3, and conocarpan, respectively. The pure compounds 1 and 2 showed a good activity against S. aureus with MIC of 1.56 µg/ml and 3.12 µg/ml, respectively. Both compounds presented MIC of 3.12 µg/ml against B. subtilis. The pure compound 6 named as conocarpan was quite active against S. aureus and B. subtilis with MIC of 6.25 µg/ml. The antibacterial properties of P. regnellii justify its use in traditional medicine for the treatment of wounds, contaminated through bacteria infections.
Resumo:
The antimicrobial activity of copaiba oils was tested against Gram-positive and Gram-negative bacteria, yeast, and dermatophytes. Oils obtained from Copaifera martii, Copaifera officinalis, and Copaifera reticulata (collected in the state of Acre) were active against Gram-positive species (Staphylococcus aureus, methicillin-resistant S. aureus, Staphylococcus epidermidis, Bacillus subtilis, and Enterococcus faecalis) with minimum inhibitory concentrations ranging from 31.3-62.5 µg/ml. The oils showed bactericidal activity, decreasing the viability of these Gram-positive bacteria within 3 h. Moderate activity was observed against dermatophyte fungi (Trichophyton rubrum and Microsporum canis). The oils showed no activity against Gram-negative bacteria and yeast. Scannning electron microscopy of S. aureus treated with resin oil from C. martii revealed lysis of the bacteria, causing cellular agglomerates. Transmission electron microscopy revealed disruption and damage to the cell wall, resulting in the release of cytoplasmic compounds, alterations in morphology, and a decrease in cell volume, indicating that copaiba oil may affect the cell wall.
Resumo:
The use of Gram type-specific PCR on buffy coat from clinical specimens for the detection of bacteraemia was evaluated for the first time using whole blood culture as the gold standard. In addition, the established buffy coat culture and whole blood PCR were also compared. Gram-positive bacteria belonging to six species and Gram-negative bacteria from 10 species were isolated and identified by culture and detected using broad-range 16S rDNA primers and Gram-specific primers. Data from the three methods all conferred very high sensitivity, specificity, positive and negative predictive values when compared to whole blood culture. The Kappa coefficients of agreement were 0.9819 (buffy coat PCR), 0.9458 (whole blood PCR) and 1.0 (buffy coat culture), which establishes their validity as alternative methods to routine blood culture in detecting bacteraemia. In addition, results showed that there was a direct correlation of WBC counts greater than 12,000 cells per mm³ to the occurrence of bacteraemia as detected by the four methods (p < 0.05).
Resumo:
Methicillin-resistant Staphylococcus remains a severe public health problem worldwide. This research was intended to identify the presence of methicillin-resistant coagulase-negative staphylococci clones and their staphylococcal cassette chromosome mec (SCCmec)-type isolate from patients with haematologic diseases presenting bacterial infections who were treated at the Blood Bank of the state of Amazonas in Brazil. Phenotypic and genotypic tests, such as SCCmec types and multilocus sequence typing (MLST), were developed to detect and characterise methicillin-resistant isolates. A total of 26 Gram-positive bacteria were isolated, such as: Staphylococcus epidermidis (8/27), Staphylococcus intermedius (4/27) and Staphylococcus aureus (4/27). Ten methicillin-resistant staphylococcal isolates were identified. MLST revealed three different sequence types: S. aureus ST243, S. epidermidis ST2 and a new clone of S. epidermidis, ST365. These findings reinforce the potential of dissemination presented by multi-resistant Staphylococcus and they suggest the introduction of monitoring actions to reduce the spread of pathogenic clonal lineages of S. aureus and S. epidermidis to avoid hospital infections and mortality risks.