145 resultados para GM-CSF
em Scielo Saúde Pública - SP
Resumo:
A polipose nasossinusal eosinofílica (PNS) é manifestação de uma doença inflamatória crônica na mucosa do nariz e nos seios paranasais caracterizada por infiltração de granulócitos eosinófilos. O fator responsável pela eosinofilia e manutenção dessas células com a perpetuação do processo inflamatório e formação polipóide é objeto constante de estudos. As citocinas como IL5 (interleucina 5) e GM-CSF (fator estimulador de colônia granulócito macrófago) aumentam a sobrevida dos eosinófilos e prolongam a sua presença no tecido polipóide, diminuindo o índice de apoptose eosinofílica. OBJETIVO: Avaliar o efeito da mitomicina C - MMC - por meio de aplicação tópica em pacientes portadores de PNS eosinofílica quanto à presença de IL5 e GM-CSF. CASUÍSTICA E MÉTODOS: Quinze pacientes portadores de PNS eosinofílica foram submetidos à aplicação tópica de MMC na concentração de 0,5mg/ml, 1ml, durante cinco minutos, na cavidade nasal direita, e submetidos à biópsia para RT-PCR 24hs após. O grupo-controle foi a cavidade nasal esquerda. O perfil de citocinas foi analisado para IL5 e GM-CSF. RESULTADOS: A comparação dos resultados de GM-CSF pré e pós-uso de MMC quando usamos o teste t pareado apresenta p=0,041. A comparação para IL5 resulta em p < 0,001. CONCLUSÃO: O uso de MMC em pacientes com PNS mostra redução com significância estatística par GM-CSF e importante significância para IL5.
Resumo:
O estudo de fatores teciduais, como a concentração de fator estimulador de colônias de macrófagos (GM-CSF) e interleucina 5 (IL-5), aponta para os mecanismos envolvidos na manutenção da eosinofilia em pólipos nasossinusais eosinofílicos. A mitomicina C (MMC) tem sido utilizada com bons resultados em otorrinolaringologia. OBJETIVO: Este estudo teve como objetivo avaliar a ação da Mitomicina C sobre a secreção de GM-CSF e IL-5 em pólipos eosinofílicos. FORMA DE ESTUDO: caso-controle. MATERIAL E MÉTODO: O estudo foi comparativo experimental autopareado, com amostras de pólipos biopsiados de pacientes portadores de polipose nasossinusal eosinofílica. Os fragmentos semeados como grupo experimental receberam mitomicina C por 5 minutos na dosagem de 400microg/ml e então lavadas em meio RPMI. Nos tempos zero, 12 e 24 horas, o sobrenadante foi retirado para determinação dos níveis de GM-CSF em 22 pacientes e IL-5, em 19 pacientes, utilizando o método de ELISA. RESULTO: Diminuição de secreção de GM-CSF nos grupos tratados com mitomicina C no tempo 24h (p<= 0,05); no grupo tratado houve expressão significativa de GM-CSF entre zero e 12 horas (p=0,013) demonstrando a viabilidade da cultura igualmente ao grupo não tratado; tendência à queda dos níveis de IL-5 no grupo tratado em 24h. CONCLUSÃO: O estudo demonstrou que a mitomicina C foi capaz de inibir a síntese de GM-CSF em culturas de pólipos nasais eosinofílicos e com provável ação sobre a secreção de IL-5, necessitando de estudos complementares.
Resumo:
São descritos 3 casos de paracoccidioidomicose com a forma aguda da doença, nos quais formas leveduriformes de Paracoccidioides brasiliensis foram visualizadas ao exame direto de medula óssea, sendo a cultura também positiva em um caso. Salienta-se o acometimento do sistema fagocítico-mononuclear e a ausência de resposta às provas cutâneas de hipersensibilidade tardia a antígenos microbianos e de P. brasiliensis em todos, bem como a gravidade do quadro clínico e lesões ósseas generalizadas em um caso, com 20.260 eosinófilos/mm³ no sangue periférico. Os autores discutem o possível papel do eosinófilo na interação hospedeiro-parasita na paracoccidioidomicose, sugerindo que a ativação de subpopulação TH 2 e o aumento de secreção de IL 5 e de GM-CSF possam estar relacionados à grande eosinofilia presente no caso mais grave
Resumo:
Neste trabalho, quantificamos fatores de crescimento em fragmentos de miocárdio de 19 cardiopatas chagásicos crônicos com insuficiência cardíaca congestiva, através da técnica da imunoperoxidase. Pesquisamos: antígenos de T. cruzi , fatores de crescimento (GM-CSF, TGF-beta1, PDGF-A e PDGF-B) e células inflamatórias (CD4+, CD8+, CD20+ e CD68+). A razão média CD4+/CD8+ foi 0,6 ± 0,3. O número médio de macrófagos (CD68+) foi 5,9±3,1; de células intersticiais PDGF-A+ foi 7,5 ± 4,3; PDGF-B+ 2,9 ± 2,7, TGF-beta1+ 2,2 ± 1,9 e GM-CSF+ 2,3 ± 1,9. A marcação para PDGF-A foi geralmente intensa, ocorrendo também em endotélio, células musculares lisas e sarcolema; não houve correlação dessa positividade com a quantidade de células intersticiais positivas para os mesmos fatores. TGF-beta1 ocorreu em baixa expressão em 100% dos casos. Em conclusão, PDGF-A e B são, provavelmente, os fatores de crescimento mais relacionados às lesões proliferativas na cardiopatia chagásica crônica e, conseqüentemente, à fibrose. GM-CSF e TGF-beta1 estão pouco expressos. Não houve correlação estatisticamente significante entre os fatores de crescimento e a quantidade de parasita.
Resumo:
Allergen-induced bone marrow responses are observable in human allergic asthmatics, involving specific increases in eosinophil-basophil progenitors (Eo/B-CFU), measured either by hemopoietic assays or by flow cytometric analyses of CD34-positive, IL-3Ralpha-positive, and/or IL-5-responsive cell populations. The results are consistent with the upregulation of an IL-5-sensitive population of progenitors in allergen-induced late phase asthmatic responses. Studies in vitro on the phenotype of developing eosinophils and basophils suggest that the early acquisition of IL-5Ralpha, as well as the capacity to produce cytokines such as GM-CSF and IL-5, are features of the differentiation process. These observations are consistent with findings in animal models, indicating that allergen-induced increases in bone marrow progenitor formation depend on hemopoietic factor(s) released post-allergen. The possibility that there is constitutive marrow upregulation of eosinophilopoiesis in allergic airways disease is also an area for future investigation.
Resumo:
Eosinophils, along with mast cells are key cells involved in the innate immune response against parasitic infection whereas the adaptive immune response is largely dependent on lymphocytes. In chronic parasitic disease and in chronic allergic disease, IL-5 is predominantly a T cell derived cytokine which is particularly important for the terminal differentiation, activation and survival of committed eosinophil precursors. The human IL-5 gene is located on chromosome 5 in a gene cluster that contains the evolutionary related IL-4 family of cytokine genes. The human IL-5 receptor complex is a heterodimer consisting of a unique a subunit (predominantly expressed on eosinophils) and a beta subunit which is shared between the receptors for IL-3 & GM-CSF (more widely expressed). The a subunit is required for ligand-specific binding whereas association with the beta subunit results in increased binding affinity. The alternative splicing of the alphaIL-5R gene which contains 14 exons can yield several alphaIL-5R isoforms including a membrane-anchored isoform (alphaIL-5Rm) and a soluble isoform (alphaIL-5Rs). Cytokines such as IL-5 produce specific and non-specific cellular responses through specific cell membrane receptor mediated activation of intracellular signal transduction pathways which, to a large part, regulate gene expression. The major intracellular signal transduction mechanism is activation of non-receptor associated tyrosine kinases including JAK and MAP kinases which can then transduce signals via a novel family of transcriptional factors named signal transducers and activators of transcription (STATS). JAK2, STAT1 and STAT 5 appear to be particularly important in IL-5 mediated eosinophil responses. Asthma is characterized by episodic airways obstruction, increased bronchial responsiveness, and airway inflammation. Several studies have shown an association between the number of activated T cells and eosinophils in the airways and abnormalities in FEV1, airway reactivity and clinical severity in asthma. It has now been well documented that IL-5 is highly expressed in the bronchial mucosa of atopic and intrinsic asthmatics and that the increased IL-5 mRNA present in airway tissues is predominantly T cell derived. Immunocytochemical staining of bronchial biopsy sections has confirmed that IL-5 mRNA transcripts are translated into protein in asthmatic subjects. Furthermore, the number of activated CD 4 + T cells and IL-5 mRNA positive cells are increased in asthmatic airways following antigen challenge and studies that have examined IL-5 expression in asthmatic subjects before and after steroids have shown significantly decreased expression following oral corticosteroid treatment in steroid-sensitive asthma but not in steroid resistant and chronic severe steroid dependent asthma. The link between T cell derived IL-5 and eosinophil activation in asthmatic airways is further strengthened by the demonstration that there is an increased number of alphaIL-5R mRNA positive cells in the bronchial biopsies of atopic and non-atopic asthmatic subjects and that the eosinophil is the predominant site of this increased alphaIL-5R mRNA expression. We have also shown that the subset of activated eosinophils that expressed mRNA for membrane bound alpha IL5r inversely correlated with FEV1, whereas the subset of activated eosinophils that expressed mRNA for soluble alphaIL5r directly correlated with FEV1. Hence, not only does this data suggest that the presence of eosinophils expressing alphaIL-5R mRNA contribute towards the pathogenesis of bronchial asthma, but also that the eosinophil phenotype with respect to alphaIL-5R isoform expression is of central importance. Finally, there are several animal, and more recently in vitro lung explant, models of allergen induced eosinophilia, late airway responses(LARS), and bronchial hyperresponsiveness(BHR) - all of which support a link between IL-5 and airway eosinophila and bronchial hyperresponsiveness. The most direct demonstration of T cell involvement in LARS is the finding that these physiological responses can be transferred by CD4+ but not CD8+ T cells in rats. The importance of IL-5 in animal models of allergen induced bronchial hyperresponsiveness has been further demonstrated by a number of studies which have indicated that IL-5 administration is able to induce late phase responses and BHR and that anti-IL-5 antibody can block allergen induced late phase responses and BHR. In summary, activated T lymphocytes, IL5 production and eosinophil activation are particularly important in the asthmatic response. Human studies in asthma and studies in allergic animal models have clearly emphasised the unique role of IL-5 in linking T lymphocytes and adaptive immunity, the eosinophil effector cell, and the asthma phenotype. The central role of activated lymphocytes and eosinophils in asthma would argue for the likely therapeutic success of strategies to block T cell and eosinophil activation (eg steroids). Importantly, more targeted therapies may avoid the complications associated with steroids. Such therapies could target key T cell activation proteins and cytokines by various means including blocking antibodies (eg anti-CD4, anti-CD40, anti-IL-5 etc), antisense oligonucleotides to their specific mRNAs, and/or selective inhibition of the promoter sites for these genes. Another option would be to target key eosinophil activation mechanisms including the aIL5r. As always, the risk to benefit ratio of such strategies await the results of well conducted clinical trials.
Resumo:
Eosinophils are prominent inflammatory cells in asthma and other allergic disorders, as well as in helminthic parasite infections. Recently, eosinophils have been reported to synthesize and store a range of regulatory proteins within their secretory granules (eokines). Eokines comprise a group of cytokines, chemokines, and growth factors which are elaborated by eosinophils. These proteins, and the messages which encode them, appear to be identical to those produced by lymphocytes and other tissues. Interestingly, immunoreactivity to many of these eokines has been found to co-localize to the eosinophil´s secretory granules. In this review, we have discussed the repertoire of 18 eokines so far identified in eosinophils, and focused on four of these, namely, interleukin-2 (IL-2), IL-4, granulocyte/macrophage colony-stimulating factor (GM-CSF), and RANTES. These four eokines co-localize to the crystalloid granules in eosinophils, as shown in studies using subcellular fractionation and immunogold labeling in electron microscopy. During stimulation by physiological triggers, for example, with serum-coated particles, eosinophils release these mediators into the surrounding supernatant. In addition, eokines are likely to be synthesized within eosinophils rather than taken up by endocytosis, as show in detection of mRNA for each of these proteins using in situ hybridization, RT-PCR, and in the case of RANTES, in situ RT-PCR. Eokines synthesis and release from eosinophils challenges the commonly held notion that these cells act downstream of key elements in immune system, and indicate that they may instead belong to the afferent arm of immunity.
Resumo:
Proteins belonging to the NFAT (nuclear factor of activated T cells) family of transcription factors are expressed in most immune cell types, and play a central role in the transcription of cytokine genes, such as IL-2, IL-4, IL-5, IL-13, IFN-gamma, TNF-alpha, and GM-CSF. The activity of NFAT proteins is regulated by the calcium/calmodulin-dependent phosphatase calcineurin, a target for inhibition by CsA and FK506. Recently, two different groups have described that mice lacking the NFAT1 transcription factor show an enhanced immune response, with tendency towards the development of a late Th2-like response. This review evaluates the possible role of NFAT proteins in the Th2 immune response and in the eosinophil-mediated allergic response.
Resumo:
Candida infections are common infections and fluconazole is one of the most frequently administered antifungal agents in their treatment. The resistance developed against antifungal agents has necessitated the improvement of new treatments. This study focuses on the investigation of the effect of fluconazole and cytokines such as interferon-gamma (IFN-gamma), tumor necrosis factor-alpha (TNF-alpha), granulocyte-macrophage colony-stimulating factor (GM-CSF) on chemokine production and anticandidal activity of human monocytes. In the study it was observed that GM-CSF caused an increase in candidacidal activity of monocytes. Anticandidal activity of GM-CSF + IFN-gamma combination was not found to be more effective than GM-CSF or IFN-gamma alone. The presence of cytokine and fluconazole caused an increase in the levels of CCL3 and CCL4 chemokines. Accordingly, it was considered that chemokines could contribute to the efficacy of fluconazole in C. albicans infections. Besides, in order to strengthen the immune system some cytokines might be used in addition to antifungal agents for the treatment.
Resumo:
Multinucleated giant cells (MGC) are cells present in characteristic granulomatous inflammation induced by intracellular infectious agents or foreign materials. The present study evaluated the modulatory effect of granulocyte macrophage colony-stimulating factor (GM-CSF) in association with other cytokines such as interferon-gamma (IFN-γ), tumour necrosis factor-alpha, interleukin (IL)-10 or transforming growth factor beta (TGF-β1) on the formation of MGC from human peripheral blood monocytes stimulated with Paracoccidioides brasiliensis antigen (PbAg). The generation of MGC was determined by fusion index (FI) and the fungicidal activity of these cells was evaluated after 4 h of MGC co-cultured with viable yeast cells of P. brasiliensis strain 18 (Pb18). The results showed that monocytes incubated with PbAg and GM-CSF plus IFN-γ had a significantly higher FI than in all the other cultures, while the addition of IL-10 or TGF-β1 had a suppressive effect on MGC generation. Monocytes incubated with both pro and anti-inflammatory cytokines had a higher induction of foreign body-type MGC rather than Langhans-type MGC. MGC stimulated with PbAg and GM-CSF in association with the other cytokines had increased fungicidal activity and the presence of GM-CSF also partially inhibited the suppressive effects of IL-10 and TGF-β1. Together, these results suggest that GM-CSF is a positive modulator of PbAg-stimulated MGC generation and on the fungicidal activity against Pb18.
Resumo:
Foot-and-mouth disease (FMD) is one of the most feared diseases of livestock worldwide. Vaccination has been a very effective weapon in controlling the disease, however a number of concerns with the current vaccine including the inability of approved diagnostic tests to reliably distinguish vaccinated from infected animals and the need for high containment facilities for vaccine production, have limited its use during outbreaks in countries previously free of the disease. A number of FMD vaccine candidates have been tested and a replication-defective human adenovirus type 5 (Ad5) vector containing the FMDV capsid (P1-2A) and 3C protease coding regions has been shown to completely protect pigs against challenge with the homologous virus (FMDV A12 and A24). An Ad5-P1-2A+3C vaccine for FMDV O1 Campos (Ad5-O1C), however, only induced a low FMDV-specific neutralizing antibody response in swine potency tests. Granulocyte-macrophage colony-stimulating factor (GM-CSF) has been successfully used to stimulate the immune response in vaccine formulations against a number of diseases, including HIV, hepatitis C and B. To attempt to improve the FMDV-specific immune response induced by Ad5-O1C, we inoculated swine with Ad5-O1C and an Ad5 vector containing the gene for porcine GM-CSF (pGM-CSF). However, in the conditions used in this trial, pGM-CSF did not improve the immune response to Ad5-O1C and adversely affected the level of protection of swine challenged with homologous FMDV.
Resumo:
Thalidomide has been shown to selectively inhibit TNF-a production in vitro by lipopolysaccharide (LPS)-stimulated monocytes. TNF-a has been shown to play a pivotal role in the pathophysiology of endotoxic shock. Using a mouse model of LPS-induced shock, we investigated the effects of thalidomide on the production of TNF-a and other cytokines and on animal survival. After injection of 100-350 µg LPS into mice, cytokines including TNF-a, IL-6, IL-10, IL-1ß, GM-CSF and IFN-g were measured in the serum. Administration of 200 mg/kg thalidomide to mice before LPS challenge modified the profile of LPS-induced cytokine secretion. Serum TNF-a levels were reduced by 93%, in a dose-dependent manner, and TNF-a mRNA expression in the spleens of mice was reduced by 70%. Serum IL-6 levels were also inhibited by 50%. Thalidomide induced a two-fold increase in serum IL-10 levels. Thalidomide treatment did not interfere with the production of GM-CSF, IL-1ß or IFN-g. The LD50 of LPS in this model was increased by thalidomide pre-treatment from 150 µg to 300 µg in 72 h. Thus, at otherwise lethal doses of LPS, thalidomide treatment was found to protect animals from death
Resumo:
Host resistance to Trypanosoma cruzi is dependent on both natural and acquired immune responses. During the acute phase of the infection the presence of IFN-g, TNF-a, IL-12 and GM-CSF has been closely associated with resistance, whereas TGF-ß and IL-10 have been associated with susceptibility. Several investigators have demonstrated that antibodies are responsible for the survival of susceptible animals in the initial phase of infection and for the maintenance of low levels of parasitemia in the chronic phase. However, how this occurs is not yet understood. Our results and other data in the literature support the hypothesis that the protective role of antibodies in the acute phase of infection is dependent mostly on their ability to induce removal of bloodstream trypomastigotes from the circulation in addition to other concomitant cell-mediated events.
Resumo:
The analysis of chromosomal abnormalities is important for the study of hematological neoplastic disorders since it facilitates classification of the disease. The ability to perform chromosome analysis of cryopreserved malignant marrow or peripheral blast cells is important for retrospective studies. In the present study, we compared the karyotype of fresh bone marrow cells (20 metaphases) to that of cells stored with a simplified cryopreservation method, evaluated the effect of the use of granulocyte-macrophage colony-stimulating factor (GM-CSF) as an in vitro mitotic index stimulator, and compared the cell viability and chromosome morphology of fresh and cryopreserved cells whenever possible (sufficient metaphases for analysis). Twenty-five bone marrow samples from 24 patients with hematological disorders such as acute myeloid leukemia, acute lymphoblastic leukemia, myelodysplastic syndrome, chronic myeloid leukemia, megaloblastic anemia and lymphoma (8, 3, 3, 8, 1, and 1 patients, respectively) were selected at diagnosis, at relapse or during routine follow-up and one sample was obtained from a bone marrow donor after informed consent. Average cell viability before and after freezing was 98.8 and 78.5%, respectively (P < 0.05). Cytogenetic analysis was successful in 76% of fresh cell cultures, as opposed to 52% of cryopreserved samples (P < 0.05). GM-CSF had no proliferative effect before or after freezing. The morphological aspects of the chromosomes in fresh and cryopreserved cells were subjectively the same. The present study shows that cytogenetic analysis of cryopreserved bone marrow cells can be a reliable alternative when fresh cell analysis cannot be done, notwithstanding the reduced viability and lower percent of successful analysis that are associated with freezing.
Resumo:
Simple and rapid latex-based diagnostic tests have been used for detecting specific antigens or antibodies in several diseases. In this article, we present the preliminary results obtained with a latex agglutination test (LAT) for diagnosing neurocysticercosis by detection of antibodies in CSF. A total of 43 CSF samples were assayed by the LAT: 19 CSF samples from patients with neurocysticercosis and 24 CSF samples from patients with other neurologic disorders (neurosyphilis, n = 8; neurotoxoplasmosis, n = 3; viral meningitis, n = 4, chronic headache, n = 9). The LAT exhibited 89.5% sensitivity and 75% specificity. The use of LAT seems to be an additional approach for the screening of neurocysticercosis with advantage of simplicity and rapidity. Further studies could be performed using purified antigens and serum samples.