85 resultados para GLIAL ACTIVATION
em Scielo Saúde Pública - SP
Resumo:
We evaluated the expression of glial fibrillary acidic protein (GFAP), glutamine synthetase (GS), ionized calcium binding adaptor protein-1 (Iba-1), and ferritin in rats after single or repeated lipopolysaccharide (LPS) treatment, which is known to induce endotoxin tolerance and glial activation. Male Wistar rats (200-250 g) received ip injections of LPS (100 µg/kg) or saline for 6 days: 6 saline (N = 5), 5 saline + 1 LPS (N = 6) and 6 LPS (N = 6). After the sixth injection, the rats were perfused and the brains were collected for immunohistochemistry. After a single LPS dose, the number of GFAP-positive cells increased in the hypothalamic arcuate nucleus (ARC; 1 LPS: 35.6 ± 1.4 vs control: 23.1 ± 2.5) and hippocampus (1 LPS: 165.0 ± 3.0 vs control: 137.5 ± 2.5), and interestingly, 6 LPS injections further increased GFAP expression in these regions (ARC = 52.5 ± 4.3; hippocampus = 182.2 ± 4.1). We found a higher GS expression only in the hippocampus of the 6 LPS injections group (56.6 ± 0.8 vs 46.7 ± 1.9). Ferritin-positive cells increased similarly in the hippocampus of rats treated with a single (49.2 ± 1.7 vs 28.1 ± 1.9) or repeated (47.6 ± 1.1 vs 28.1 ± 1.9) LPS dose. Single LPS enhanced Iba-1 in the paraventricular nucleus (PVN: 92.8 ± 4.1 vs 65.2 ± 2.2) and hippocampus (99.4 ± 4.4 vs 73.8 ± 2.1), but had no effect in the retrochiasmatic nucleus (RCA) and ARC. Interestingly, 6 LPS increased the Iba-1 expression in these hypothalamic and hippocampal regions (RCA: 57.8 ± 4.6 vs 36.6 ± 2.2; ARC: 62.4 ± 6.0 vs 37.0 ± 2.2; PVN: 100.7 ± 4.4 vs 65.2 ± 2.2; hippocampus: 123.0 ± 3.8 vs 73.8 ± 2.1). The results suggest that repeated LPS treatment stimulates the expression of glial activation markers, protecting neuronal activity during prolonged inflammatory challenges.
Resumo:
The immunomodulador glatiramer acetate (GA) has been shown to significantly reduce the severity of symptoms during the course of multiple sclerosis and in its animal model - experimental autoimmune encephalomyelitis (EAE). Since GA may influence the response of non-neuronal cells in the spinal cord, it is possible that, to some extent, this drug affects the synaptic changes induced during the exacerbation of EAE. In the present study, we investigated whether GA has a positive influence on the loss of inputs to the motoneurons during the course of EAE in rats. Lewis rats were subjected to EAE associated with GA or placebo treatment. The animals were sacrificed after 15 days of treatment and the spinal cords processed for immunohistochemical analysis and transmission electron microscopy. A correlation between the synaptic changes and glial activation was obtained by performing labeling of synaptophysin and glial fibrillary acidic protein using immunohistochemical analysis. Ultrastructural analysis of the terminals apposed to alpha motoneurons was also performed by electron transmission microscopy. Interestingly, although the GA treatment preserved synaptophysin labeling, it did not significantly reduce the glial reaction, indicating that inflammatory activity was still present. Also, ultrastructural analysis showed that GA treatment significantly prevented retraction of both F and S type terminals compared to placebo. The present results indicate that the immunomodulator GA has an influence on the stability of nerve terminals in the spinal cord, which in turn may contribute to its neuroprotective effects during the course of multiple sclerosis.
Resumo:
Nitric oxide (NO) participates in neuronal lesions in the digestive form of Chagas disease and the proximity of parasitised glial cells and neurons in damaged myenteric ganglia is a frequent finding. Glial cells have crucial roles in many neuropathological situations and are potential sources of NO. Here, we investigate peripheral glial cell response to Trypanosoma cruzi infection to clarify the role of these cells in the neuronal lesion pathogenesis of Chagas disease. We used primary glial cell cultures from superior cervical ganglion to investigate cell activation and NO production after T. cruzi infection or lipopolysaccharide (LPS) exposure in comparison to peritoneal macrophages. T. cruzi infection was greater in glial cells, despite similar levels of NO production in both cell types. Glial cells responded similarly to T. cruzi and LPS, but were less responsive to LPS than macrophages were. Our observations contribute to the understanding of Chagas disease pathogenesis, as based on the high susceptibility of autonomic glial cells to T. cruzi infection with subsequent NO production. Moreover, our findings will facilitate future research into the immune responses and activation mechanisms of peripheral glial cells, which are important for understanding the paradoxical responses of this cell type in neuronal lesions and neuroprotection.
Resumo:
The present review describes recent research on the regulation by glutamate and Ca2+ of the phosphorylation state of the intermediate filament protein of the astrocytic cytoskeleton, glial fibrillary acidic protein (GFAP), in immature hippocampal slices. The results of this research are discussed against a background of modern knowledge of the functional importance of astrocytes in the brain and of the structure and dynamic properties of intermediate filament proteins. Astrocytes are now recognized as partners with neurons in many aspects of brain function with important roles in neural plasticity. Site-specific phosphorylation of intermediate filament proteins, including GFAP, has been shown to regulate the dynamic equilibrium between the polymerized and depolymerized state of the filaments and to play a fundamental role in mitosis. Glutamate was found to increase the phosphorylation state of GFAP in hippocampal slices from rats in the post-natal age range of 12-16 days in a reaction that was dependent on external Ca2+. The lack of external Ca2+ in the absence of glutamate also increased GFAP phosphorylation to the same extent. These effects of glutamate and Ca2+ were absent in adult hippocampal slices, where the phosphorylation of GFAP was completely Ca2+-dependent. Studies using specific agonists of glutamate receptors showed that the glutamate response was mediated by a G protein-linked group II metabotropic glutamate receptor (mGluR). Since group II mGluRs do not act by liberating Ca2+ from internal stores, it is proposed that activation of the receptor by glutamate inhibits Ca2+ entry into the astrocytes and consequently down-regulates a Ca2+-dependent dephosphorylation cascade regulating the phosphorylation state of GFAP. The functional significance of these results may be related to the narrow developmental window when the glutamate response is present. In the rat brain this window corresponds to the period of massive synaptogenesis during which astrocytes are known to proliferate. Possibly, glutamate liberated from developing synapses during this period may signal an increase in the phosphorylation
Resumo:
Reduction of complement activation through an alteration of the Fc fragment of immunoglobulins by b-propiolactone treatment was carried out in equine antisera raised against rabies virus, Bothrops venoms and diphtherial toxin. Results were evaluated by means of an anaphylactic test performed on guinea-pigs, and compared to the ones obtained with the same sera purified by saline precipitation (ammonium sulfate), followed or not by enzymatic digestion with pepsin. Protein purity levels for antibothropic serum were 184.5 mg/g and 488.5 mg/g in b-propiolactone treated and pepsin-digested sera, respectively. The recovery of specific activity was 100% and 62.5% when using antibothropic serum treated by b-propiolactone and pepsin digestion, respectively. The antidiphtherial and anti-rabies sera treated with b-propiolactone and pepsin presented protein purity levels of 5,698 and 7,179 Lf/g, 16,233 and 6,784 IU/g, respectively. The recovery of specific activity for these antisera were 88.8%, 77.7%, 100% and 36,5%, respectively. b-propiolactone treatment induced a reduction in complement activation, tested "in vivo", without significant loss of biological activity. This treatment can be used in the preparation of heterologous immunoglobulins for human use.
Resumo:
Since there are no studies evaluating the participation of the complement system (CS) in Jorge Lobo's disease and its activity on the fungus Lacazia loboi, we carried out the present investigation. Fungal cells with a viability index of 48% were obtained from the footpads of BALB/c mice and incubated with a pool of inactivated serum from patients with the mycosis or with sterile saline for 30 min at 37 ºC. Next, the tubes were incubated for 2 h with a pool of noninactivated AB+ serum, inactivated serum, serum diluted in EGTA-MgCl2, and serum diluted in EDTA. The viability of L. loboi was evaluated and the fungal suspension was cytocentrifuged. The slides were submitted to immunofluorescence staining using human anti-C3 antibody. The results revealed that 98% of the fungi activated the CS by the alternative pathway and no significant difference in L. loboi viability was observed after CS activation. In parallel, frozen histological sections from 11 patients were analyzed regarding the presence of C3 and IgG by immunofluorescence staining. C3 and IgG deposits were observed in the fungal wall of 100% and 91% of the lesions evaluated, respectively. The results suggest that the CS and immunoglobulins may contribute to the defense mechanisms of the host against L. loboi.
Resumo:
OBJECTIVE: Using P-wave signal-averaged electrocardiography, we assessed the patterns of atrial electrical activation in patients with idiopathic atrial fibrillation as compared with patterns in patients with atrial fibrillation associated with structural heart disease. METHODS: Eighty patients with recurrent paroxysmal atrial fibrillation were divided into 3 groups as follows: group I - 40 patients with atrial fibrillation associated with non-rheumatic heart disease; group II - 25 patients with rheumatic atrial fibrillation; and group III - 15 patients with idiopathic atrial fibrillation. All patients underwent P-wave signal-averaged electrocardiography for frequency-domain analysis using spectrotemporal mapping and statistical techniques for detecting and quantifying intraatrial conduction disturbances. RESULTS: We observed an important fragmentation in atrial electrical conduction in 27% of the patients in group I, 64% of the patients in group II, and 67% of the patients in group III (p=0.003). CONCLUSION: Idiopathic atrial fibrillation has important intraatrial conduction disturbances. These alterations are similar to those observed in individuals with rheumatic atrial fibrillation, suggesting the existence of some degree of structural involvement of the atrial myocardium that cannot be detected with conventional electrocardiography and echocardiography.
Resumo:
The case of a 16-year-old patient with atrioventricular tachycardia caused by a single left anterolateral accessory pathway is reported. When the patient underwent radiofrequency ablation, a lesion on the mitral annulus lateral wall produced changes in the retrograde atrial activation pattern determined by that pathway; changes ranged from a delay in depolarization of the annulus posterior portions to full left atrium counterclockwise activation. Such phenomena were probably caused by a block in the isthmus between the annulus and the lower left pulmonary vein ostium. This case illustrates the importance of the mitral-pulmonary isthmus in the process of left atrium activation, an alert to changes induced by its unintentional block during accessory pathway ablation.
Resumo:
OBJECTIVE: To determine whether recording of the activation potential may be used as an isolated criterion to guide catheter ablation of atriofascicular Mahaim fibers. METHODS: We studied 6 patients (5 females, mean age of 26±7.3 years) with paroxysmal tachycardias with a wide QRS complex, whose electrophysiological study diagnosed atriofascicular Mahaim fibers. Mapping and catheter ablation were performed in sinus rhythm, guided only by the recording of the activation potential of the fiber. RESULTS: Efficacy in ablation was achieved in all patients. The fibers were located in the right lateral region of the tricuspid ring in 3 patients, right posterolateral region in 2, and right anterolateral region in 1. A mean of 5.3±3 radiofrequency applications was performed. The mean fluoroscopy time was 46.6±25 minutes, and the mean duration of the procedure was 178.6±108 minutes. No complication occurred. In a mean 20-month follow-up, all patients were asymptomatic and receiving no antiarrhythmic drugs. CONCLUSION: Catheter ablation of Mahaim fibers may be performed with good safety and efficacy by mapping the activation potential of the tricuspid ring in sinus rhythm.