140 resultados para Functional near-infrared spectroscopy

em Scielo Saúde Pública - SP


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Visible and near infrared (vis-NIR) spectroscopy is widely used to detect soil properties. The objective of this study is to evaluate the combined effect of moisture content (MC) and the modeling algorithm on prediction of soil organic carbon (SOC) and pH. Partial least squares (PLS) and the Artificial neural network (ANN) for modeling of SOC and pH at different MC levels were compared in terms of efficiency in prediction of regression. A total of 270 soil samples were used. Before spectral measurement, dry soil samples were weighed to determine the amount of water to be added by weight to achieve the specified gravimetric MC levels of 5, 10, 15, 20, and 25 %. A fiber-optic vis-NIR spectrophotometer (350-2500 nm) was used to measure spectra of soil samples in the diffuse reflectance mode. Spectra preprocessing and PLS regression were carried using Unscrambler® software. Statistica® software was used for ANN modeling. The best prediction result for SOC was obtained using the ANN (RMSEP = 0.82 % and RPD = 4.23) for soil samples with 25 % MC. The best prediction results for pH were obtained with PLS for dry soil samples (RMSEP = 0.65 % and RPD = 1.68) and soil samples with 10 % MC (RMSEP = 0.61 % and RPD = 1.71). Whereas the ANN showed better performance for SOC prediction at all MC levels, PLS showed better predictive accuracy of pH at all MC levels except for 25 % MC. Therefore, based on the data set used in the current study, the ANN is recommended for the analyses of SOC at all MC levels, whereas PLS is recommended for the analysis of pH at MC levels below 20 %.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The objective of this work was to establish a calibration equation and to estimate the efficiency of near-infrared reflectance (NIR) spectroscopy for evaluating rapeseed oil content in Southern Brazil. Spectral data from 124 half-sib families were correlated with oil contents determined by the chemical method. The accuracy of the equation was verified by coefficient of determination (R²) of 0.92, error of calibration (SEC) of 0.78, and error of performance (SEP) of 1.22. The oil content of ten genotypes, which were not included in the calibration with NIR, was similar to the one obtained by the standard chemical method. NIR spectroscopy is adequate to differentiate oil content of rapeseed genotypes.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Soil organic matter from the surface horizon of two Brazilian soils (a Latosol and a Chernosol), in bulk samples (in situ SOM) and in HF-treated samples (SOM), was characterized by elemental analyses, diffuse reflectance (DRIFT) and transmission Fourier transform infrared spectroscopy (T-FTIR). Humic acids (HA), fulvic acids (FA) and humin (HU) isolated from the SOM were characterized additionally by ultraviolet-visible spectroscopy (UV-VIS). After sample oxidation and alkaline treatment, the DRIFT technique proved to be more informative for the detection of "in situ SOM" and of residual organic matter than T-FTIR. The higher hydrophobicity index (HI) and H/C ratio obtained in the Chernosol samples indicate a stronger aliphatic character of the organic matter in this soil than the Latosol. In the latter, a pronounced HI decrease was observed after the removal of humic substances (HS). The weaker aliphatic character, the higher O/C ratio, and the T-FTIR spectrum obtained for the HU fraction in the Latosol suggest the occurrence of surface coordination of carboxylate ions. The Chernosol HU fraction was also oxygenated to a relatively high extent, but presented a stronger hydrophobic character in comparison with the Latosol HU. These differences in the chemical and functional group composition suggest a higher organic matter protection in the Latosol. After the HF treatment, decreases in the FA proportion and the A350/A550 ratio were observed. A possible loss of FA and condensation of organic molecules due to the highly acid medium should not be neglected.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Brazil is one of the largest producers and consumers of charcoal in the world. About 50% of its charcoal comes from native forests, with a large part coming from unsustainable operations. The anatomic identification of charcoal is subjective; an instrumental technique would facilitate the monitoring of forests. This study aimed to verify the feasibility of using medium and near infrared reflectance spectroscopy to discriminate native (ipê) from plantation charcoals (eucalyptus). Principal Components Analysis, followed by Discriminant Factorial Analysis formed two different groups indicated by Mahalanobis distances of 40.6 and 80.3 for near and mid infrared, respectively. Validation of the model showed 100% efficacy.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Agroindustrial waste in general presents significant levels of nutrients and organic matter and has therefore been frequently put to agricultural use. In this context, the objective of this study was to determine the chemical composition, nitrogen, phosphorus, potassium, calcium, magnesium and carbon content, as well as the qualitative characteristics through Fourier transform infrared spectroscopy of four samples of poultry litter and one sample of cattle manure, from the southwestern region of Paraná, Brazil. Results revealed that, in general, the poultry litter presented higher amount of nutrients and carbon than the cattle manure. The infrared spectra allowed identification of the functional groups present and the differences in degree of sample humification. The statistical treatment confirmed the quantitative and qualitative differences revealed.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The pressure sensitivities of the near infrared spectra of the light-harvesting (LH2) complex and a mutant complex with a simplified BChl-B850 binding pocket were compared. In the mutant an abrupt change in the spectral properties occurred at 250 MPa, which was not observed with the native sample. Increased disorder due to collapse of the chromophore pocket is suggested.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A aplicação de técnicas espectroscópicas que utilizam a radiação infravermelha (NIRS-Near Infrared Spectroscopy e DRIFTS-Diffuse Reflectance Fourier Transformed Spectroscopy) na análise inorgânica do solo tem sido proposta desde a década de 1970, mas até os dias atuais são raros os métodos implementados rotineiramente no Brasil. Isso deve-se à dificuldade em construir modelos de calibração, por meio de métodos estatísticos multivariados, utilizando-se amostras reais de solo, de constituição complexa, que varia geograficamente e de acordo com o manejo. Por isso, os objetivos deste trabalho foram construir modelos de calibração em NIRS e DRIFTS para a quantificação das frações de argila e areia, em amostras de solos de classes diferentes - Latossolo Vermelho (predominante), Nitossolo, Argissolo Vermelho e Neossolo Quartzarênico - e avaliar qual dessas duas técnicas é mais adequada para essa finalidade, assim como a interferência do agrupamento de amostras e da seleção de variáveis espectrais na qualidade desses modelos. Para isso, valores de referência obtidos pelo método do densímetro, método largamente utilizado nos laboratórios de análise de solo, foram correlacionados com valores de absorbância em NIRS e DRIFTS pela ferramenta estatística PLS (Partial Least Squares), obtendo-se altos coeficientes de determinação (R²), de 0,95, 0,90 e 0,91 para argila, silte e areia, respectivamente, na validação externa. Isso confirma a aplicabilidade das técnicas espectroscópicas na análise granulométrica do solo para fins agrícolas. O agrupamento das amostras segundo a localização e a seleção de variáveis espectrais pouco influenciou na qualidade dos modelos. A técnica espectroscópica mais indicada para essa finalidade foi a DRIFTS.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Neural Networks are a set of mathematical methods and computer programs designed to simulate the information process and the knowledge acquisition of the human brain. In last years its application in chemistry is increasing significantly, due the special characteristics for model complex systems. The basic principles of two types of neural networks, the multi-layer perceptrons and radial basis functions, are introduced, as well as, a pruning approach to architecture optimization. Two analytical applications based on near infrared spectroscopy are presented, the first one for determination of nitrogen content in wheat leaves using multi-layer perceptrons networks and second one for determination of BRIX in sugar cane juices using radial basis functions networks.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this work a fast method for the determination of the total sugar levels in samples of raw coffee was developed using the near infrared spectroscopy technique and multivariate regression. The sugar levels were initially obtained using gravimety as the reference method. Later on, the regression models were built from the near infrared spectra of the coffee samples. The original spectra were pre-treated according to the Kubelka-Munk transformation and multiplicative signal correction. The proposed analytical method made possible the direct determination of the total sugar levels in the samples with an error lower by 8% with respect to the conventional methodology.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Least-squares support vector machines (LS-SVM) were used as an alternative multivariate calibration method for the simultaneous quantification of some common adulterants found in powdered milk samples, using near-infrared spectroscopy. Excellent models were built using LS-SVM for determining R², RMSECV and RMSEP values. LS-SVMs show superior performance for quantifying starch, whey and sucrose in powdered milk samples in relation to PLSR. This study shows that it is possible to determine precisely the amount of one and two common adulterants simultaneously in powdered milk samples using LS-SVM and NIR spectra.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The main objective of the present work is represented by the characterization of the physical properties of industrial kraft paper (i.e. transversal and longitudinal tear resistance, transversal traction resistance, bursting or crack resistance, longitudinal and transversal compression resistance (SCT (Compressive Strength Tester) and compression resistance (RCT-Ring Crush Test)) by near infrared spectroscopy associated to partial least squares regression. Several multivariate models were developed, many of them with high prevision capacity. In general, low prevision errors were observed and regression coefficients that are comparable with those provided by conventional standard methodologies.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This study developed and validated a method for moisture determination in artisanal Minas cheese, using near-infrared spectroscopy and partial-least-squares. The model robustness was assured by broad sample diversity, real conditions of routine analysis, variable selection, outlier detection and analytical validation. The model was built from 28.5-55.5% w/w, with a root-mean-square-error-of-prediction of 1.6%. After its adoption, the method stability was confirmed over a period of two years through the development of a control chart. Besides this specific method, the present study sought to provide an example multivariate metrological methodology with potential for application in several areas, including new aspects, such as more stringent evaluation of the linearity of multivariate methods.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Wood is an extremely complex biological material, which can show macroscopic similarities that make it difficult to discriminate between species. Discrimination between similar wood species can be achieved by either anatomic or instrumental methods, such as near infrared spectroscopy (NIR). Although different spectroscopy methods are currently available, few studies have applied them to discriminate between wood species. In this study, we applied a partial least squares-discriminant analysis (PLS-DA) model to evaluate the viability of using direct fluorescence measurements for discriminating between Eucalyptus grandis, Eucalyptus urograndis, and Cedrela odorata. The results show that molecular fluorescence is an efficient technique for discriminating between these visually similar wood species. With respect to calibration and the validation samples, we observed no misclassifications or outliers.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The purpose of this study was to determine the effect of respiratory muscle fatigue on intercostal and forearm muscle perfusion and oxygenation in patients with heart failure. Five clinically stable heart failure patients with respiratory muscle weakness (age, 66±12 years; left ventricle ejection fraction, 34±3%) and nine matched healthy controls underwent a respiratory muscle fatigue protocol, breathing against a fixed resistance at 60% of their maximal inspiratory pressure for as long as they could sustain the predetermined inspiratory pressure. Intercostal and forearm muscle blood volume and oxygenation were continuously monitored by near-infrared spectroscopy with transducers placed on the seventh left intercostal space and the left forearm. Data were compared by two-way ANOVA and Bonferroni correction. Respiratory fatigue occurred at 5.1±1.3 min in heart failure patients and at 9.3±1.4 min in controls (P<0.05), but perceived effort, changes in heart rate, and in systolic blood pressure were similar between groups (P>0.05). Respiratory fatigue in heart failure reduced intercostal and forearm muscle blood volume (P<0.05) along with decreased tissue oxygenation both in intercostal (heart failure, -2.6±1.6%; controls, +1.6±0.5%; P<0.05) and in forearm muscles (heart failure, -4.5±0.5%; controls, +0.5±0.8%; P<0.05). These results suggest that respiratory fatigue in patients with heart failure causes an oxygen demand/delivery mismatch in respiratory muscles, probably leading to a reflex reduction in peripheral limb muscle perfusion, featuring a respiratory metaboreflex.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

ABSTRACT This study aimed to identify wavelengths based on leaf reflectance (400-1050 nm) to estimate white mold severity in common beans at different seasons. Two experiments were carried out, one during fall and another in winter. Partial Least Squares (PLS) regression was used to establish a set of wavelengths that better estimates the disease severity at a specific date. Therefore, observations were previously divided in two sub-groups. The first one (calibration) was used for model building and the second subgroup for model testing. Error measurements and correlation between measured and predicted values of disease severity index were employed to provide the best wavelengths in both seasons. The average indexes of each experiment were of 5.8% and 7.4%, which is considered low. Spectral bands ranged between blue and green, green and red, and red and infrared, being most sensitive for disease estimation. Beyond the transition ranges, other spectral regions also presented wavelengths with potential to determine the disease severity, such as red, green, and near infrared.