179 resultados para Foamy macrophages
em Scielo Saúde Pública - SP
Resumo:
Leprosy is an infectious disease caused by Mycobacterium leprae that affects the skin and nerves, presenting a singular clinical picture. Across the leprosy spectrum, lepromatous leprosy (LL) exhibits a classical hallmark: the presence of a collection of M. leprae-infected foamy macrophages/Schwann cells characterised by their high lipid content. The significance of this foamy aspect in mycobacterial infections has garnered renewed attention in leprosy due to the recent observation that the foamy aspect represents cells enriched in lipid droplets (LD) (also known as lipid bodies). Here, we discuss the contemporary view of LD as highly regulated organelles with key functions in M. leprae persistence in the LL end of the spectrum. The modern methods of studying this ancient disease have contributed to recent findings that describe M. leprae-triggered LD biogenesis and recruitment as effective mycobacterial intracellular strategies for acquiring lipids, sheltering and/or dampening the immune response and favouring bacterial survival, likely representing a fundamental aspect of M. leprae pathogenesis. The multifaceted functions attributed to the LD in leprosy may contribute to the development of new strategies for adjunctive anti-leprosy therapies.
Resumo:
An outbreak of hepatogenous photosensitization is reported in a flock of 28 sheep grazing Brachiaria decumbens in Mato Grosso do Sul State, Central-Western Brazil. Seven lambs and an adult sheep were affected and 6 of them died. Two surviving affected lambs and one lamb without clinical signs had increased serum values of gamma glutamyltransferase, bilirubin, and cholesterol. In two adult unaffected sheep those parameters were within normal values. An adult sheep submitted to necropsy presented moderate body condition, unilateral corneal opacity, drying of the muzzle, moderate jaundice, increased lobular pattern of the liver, and a distended gallbladder. Histological lesions were epithelial degeneration, necrosis, and hyperplasia of small bile ducts. Mild amounts of foamy macrophages were observed, mainly in the centroacinar zone. Diffuse swelling and vacuolation were observed in hepatocytes. Crystal negative images were found within bile ducts, foamy macrophages, and the lumen of some renal tubules. The heart showed multifocal areas of degeneration and necrosis of the muscle fibers. Pasture samples (Brachiaria decumbens) contained 2.36% of protodioscin. No Pithomyces chartarum spores were found in the pasture. Samples from a similar neighboring B. decumbens pasture grazed by cattle without photosensitization contained 1.63% of protodioscin isomers. Outbreaks of photosensitization caused by Brachiaria spp. are common in cattle in the Brazilian Cerrado (savanna) with about 51 million hectares of Brachiaria spp pastures. Sheep farming has been recently developed in this region, and the number of sheep is increasing significantly. Because sheep are more susceptible than cattle to lithogenic saponins, poisoning by Brachiaria should be an important limiting factor for the sheep industry.
Resumo:
Brachiaria species are the most important grasses for cattle production in Brazil. However, a limiting factor for the use of Brachiaria spp. is their toxicity. Most outbreaks of hepatogenous photosensitization are caused by B. decumbens; however B. brizantha, B. humidicola and B. ruziziensis can also cause poisoning. The poisoning affects cattle, sheep, goats and buffalo. Sheep are more susceptible than other animal species and the young are more susceptible than adults. There are differences in susceptibility among animals of the same species and it has been suggested that this resistance is genetic. Also has been suggested that buffalo and probably some sheep are resilient, i.e. when poisoned these animals have histologic lesions and high GGT serum concentrations, but do not show clinical signs. In general, saponin concentrations are higher in growing plants, but outbreaks occur all over the year, probably due to unexplained rise in saponin concentration in the plant. A clinical syndrome of progressive weight loss and death, without photosensitization, has been reported in cattle poisoned by B. decumbens. Main preventive measures are based on the selection of resistant or resilient animals and on the development of Brachiaria species or varieties with low saponin concentration.
Resumo:
Paracoccidioidomycosis is a chronic granulomatous disease that induces a specific inflammatory and immune response. The participation of nitric oxide (NO), a product of the inducible nitric oxide synthase enzyme (iNOS), as an important fungicidal molecule against Paracoccidioides brasiliensis has been demonstrated. In order to further characterize the Oral Paracoccidioidomycosis (OP), we undertook an immunohistochemical study of iNOS+, CD45RO+, CD3+, CD8+, CD20+, CD68+ cells and mast cells. The samples were distributed in groups according to the number of viable fungi per mm². Our results showed weak immunolabeling for iNOS in the multinucleated giant cells (MNGC) and in most of the mononuclear (MN) cells, and the proportion of iNOS+ MN/MNGC cells in the OP were comparable to Control (clinically healthy oral tissues). Additionally, our analysis revealed a similarity in the number of CD4+ cells between the Control and the OP groups with higher numbers of fungi. These findings suggest that a low expression of iNOS and a decrease in the CD4+ T cells in OP may represent possible mechanisms that permit the local fungal multiplication and maintenance of active oral lesions.
Resumo:
Iron is an essential growth element of virtually all microorganisms and its restriction is one of the mechanisms used by macrophages to control microbial multiplication. Paracoccidioides brasiliensis, the agent of paracoccidioidomycosis, an important systemic mycosis in Latin America, is inhibited in its conidia-to-yeast conversion in the absence of iron. We studied the participation of iron in the nitric oxide (NO)-mediated fungicidal mechanism against conidia. Peritoneal murine macrophages activated with 50U/mL of IFN-gamma or treated with 35 µM Deferoxamine (DEX) and infected with P. brasiliensis conidia, were co-cultured and incubated for 96 h in the presence of different concentrations of holotransferrin (HOLO) and FeS0(4). The supernatants were withdrawn in order to assess NO2 production by the Griess method. The monolayers were fixed, stained and observed microscopically. The percentage of the conidia-to-yeast transition was estimated by counting 200 intracellular propagules. IFN-gamma-activated or DEX-treated Mthetas presented marked inhibition of the conidia-to-yeast conversion (19 and 56%, respectively) in comparison with non-activated or untreated Mthetas (80%). IFN-gamma-activated macrophages produced high NO levels in comparison with the controls. Additionally, when the activated or treated-macrophages were supplemented with iron donors (HOLO or FeSO4), the inhibitory action was reversed, although NO production remained intact. These results suggest that the NO-mediated fungicidal mechanism exerted by IFN-gamma-activated macrophages against P. brasiliensis conidia, is dependent of an iron interaction.
Resumo:
The Flaviviridae family, Flavivirus genus includes viruses that are transmitted to vertebrates by infected mosquitoes or ticks. The genus Flavivirus includes a variety of viruses that cause diseases such as acute febrile illness, encephalitis, and hemorrhagic fever. Flaviviruses primarily infect blood monocytes and tissue macrophages, which have been shown to be permissive, supporting viral replication and serving as virus reservoirs. On the other hand, these cells may have an important antiviral activity related to modulation by cytokine production and by the capacity of these cells to synthesize reactive free radicals such as nitric oxide (NO) which can have a microbicidal effect. The present study was performed in order to determine the production of cytokines interleukin-1beta (IL-1β), tumor necrosis factor -alpha (TNF-α), transforming growth factor- beta (TGF-β) and interferon -alpha (IFN-α) and NO by macrophages infected with one of four Brazilian flaviviruses, Bussuquara virus (BUSV), Yellow Fever virus (YFV), Rocio virus (ROCV) and Encephalitis Saint Louis virus (SLEV), and to verify the possible antiviral effect of NO during macrophage infection with ROCV. Moreover, we asked if the different viruses were able to regulate bacterial lipopolysaccharide (LPS) induced cytokine production. Our results showed that YFV and SLEV reduced the production of IL-1β and TGF-β by LPS-stimulated macrophages, while ROCV only diminished LPS-stimulated TGF-β synthesis. On the other hand, BUSV more likely favored an enhancement of the LPS-induced production of IL-1β by macrophages. Additionally, while most of the viruses stimulated the production of IFN-α, none of them altered the production of TNF-α by murine macrophages. Interestingly, all viruses induced synthesis of NO that was not correlated with antiviral activity for ROCV.
Resumo:
An electronmicroscopy study of the spleen from mice infected with Plasmodium berghei was carried out to investigate the types ofcells in volved in the removal of parasites from the blood, and the mechanisms by which this occurs. Macrophages, particularly from the red pulp and the marginal zone of the spleen, constituted the most important population of phagocytic cells in the spleen. At the height ofparasitaemia, macrophages in the periphery of the white pulp, especially in the mantle zone of secondary follicles, were also found to participate in phagocytosis, although to a limited extent. Our fingings suggest that phagocytosis of free parasites or parasitized erythrocytes in the spleen is an important mechanism of clearance of parasites from the circulation. Parasites removed from the erythrocytes when these cells cross the interendothelial slits are further phagocytosed by neighbouring macrophages. Evidence is presented suggesting that spleen macrophages may act against the parasite through a process of cytotoxicity.
Resumo:
We investigated the influence of Salmonella typhimurium load and specific antibodies on phagocytosis in schistosomiasis. Macrophages from Schistosoma mansoni-infected mice showed depressed capacity to increase the phagocytosis in the presence of a high bacterial load, due to a reduced involvement of these cells in phagocytosis and to a deficient ability to increase the number of phagocytosed bacteria. Normal and Salmonella-infected mice increased their phagocytic capacity when exposed to a high bacterial load. Antibody to Salmonella increased the phagocytic capacity of macrophages from Schistosoma-infected mice due to an increase in the number of bacteria phagocytosed but caused no modification in the number of macrophages engaged in phagocytosis. Our data indicate that macrophages from Schistosoma-infected mice work close to their functional limit, since no increase in phagocytosis was observed after increasing the bacterial load. Specific antibodies can improve their phagocytic capacity and, therefore, could help clearing concurrent infection.
Resumo:
IntroductionPurpureocillium lilacinum is emerging as a causal agent of hyalohyphomycosis that is refractory to antifungal drugs; however, the pathogenic mechanisms underlying P. lilacinum infection are not understood. In this study, we investigated the interaction of P. lilacinum conidia with human macrophages and dendritic cells in vitro.MethodsSpores of a P. lilacinum clinical isolate were obtained by chill-heat shock. Mononuclear cells were isolated from eight healthy individuals. Monocytes were separated by cold aggregation and differentiated into macrophages by incubation for 7 to 10 days at 37°C or into dendritic cells by the addition of the cytokines human granulocyte-macrophage colony stimulating factor and interleukin-4. Conidial suspension was added to the human cells at 1:1, 2:1, and 5:1 (conidia:cells) ratios for 1h, 6h, and 24h, and the infection was evaluated by Giemsa staining and light microscopy.ResultsAfter 1h interaction, P. lilacinum conidia were internalized by human cells and after 6h contact, some conidia became inflated. After 24h interaction, the conidia produced germ tubes and hyphae, leading to the disruption of macrophage and dendritic cell membranes. The infection rate analyzed after 6h incubation of P. lilacinumconidia with cells at 2:1 and 1:1 ratios was 76.5% and 25.5%, respectively, for macrophages and 54.3% and 19.5%, respectively, for cultured dendritic cells.ConclusionsP. lilacinum conidia are capable of infecting and destroying both macrophages and dendritic cells, clearly demonstrating the ability of this pathogenic fungus to invade human phagocytic cells.
Resumo:
An "in vitro" system has been developed for study of host cell-parasite interaction in visceral and cutaneous leishmaniasis. Avirulent promastigotes of L. brasiliensis and L. donovani, from strains originally isolated from human cases and mantained by serial culture in Davis' Medium were allowed to infect cultured macrophages from rat peritoneal exudate. Challenge of the macrophages by parasites took place in 199 medium, at 33ºC for L. brasiliensis and at 37ºC for L. donovani. Although the rat is resistant to infections by Leishmania spp., the promastigotes not only invaded the host cells, but transformed into amastigotes and later mutiplied, from 10 min after challenge to 24 hours later.
Resumo:
Unstimulated adherent mouse peritoneal cells were cultured in vitro and infected with equal numbers of a single strain of Leishmania m. mexicana amastigotes (AM), virulent promastigotes (VP), avirulent promastigotes (AVP) and fixed promastigotes (FP). Duplicate May-Grünwald-Giemsa stained coverslips were examined at time intervals up to 13 days. By 3 hr post infection, the number of macrophages containing parasites varied between 60.5% (VP) and 84% (AM) for macrophages exposed to living parasites, compared to 6.5% for macrophages exposed for FP. However, variable numbers of parasites showed degenerative changes by 3 hr, and the number of macrophages containing morphologically intact parasites varied significantly between cells infected with AM (84%) and those infected with VP (42%) or AVP(40%). The mean number on intacte parasites/macrophage also differed significantly between AM-infected cells and living or fixed promastigotes-infected cells. Quantitation of intact and degenerated parasites indicated parasite multiplication, as well as destruction, in VP-infected cells and parasite survival and multiplication in AM-infecte monolayers; in contrast no evidence of parasite multiplication was seen in AVP-infected cells. Changes in the mono layer itself (cell loss and macrophage vacuolization) were also evaluated. These results suggest that crucial events determining the outcome of infection occur in the host-parasite relationship during the fist 24 hours of infection. These events are apparently influenced not only by parasite or host strain but by environmentally induced variation within a given strain.
Resumo:
Single doses of drugs active aginst Trypanosoma cruzi (megazol, nifurtimox and benznidazole) induce a rapid clearence of the blood parasites in experimentally infected mice. Furthermore, the in vitro phagocytosis and intracellular destruction by mouse peritoneal macrophage of blood forms collected from the treatment animals is strongly enhanced as compared with parasites from untreated controls. The uptake of the blood forms by macrophages is significantly higher with megazol than with benznidazole and nifurtimox, a finding that concurs with data showing that megazol is also the most active compound in the living host. The possibility that macrophages participate in a synergic effect between the host immune response and chemotherapeutic effect is discussed.