22 resultados para Flow simulation
em Scielo Saúde Pública - SP
Resumo:
The Brazilian East coast was intensely affected by deforestation, which drastically cut back the original biome. The possible impacts of this process on water resources are still unknown. The purpose of this study was an evaluation of the impacts of deforestation on the main water balance components of the Galo creek watershed, in the State of Espírito Santo, on the East coast of Brazil. Considering the real conditions of the watershed, the SWAT model was calibrated with data from 1997 to 2000 and validated for the period between 2001 and 2003. The calibration and validation processes were evaluated by the Nash-Sutcliffe efficiency coefficient and by the statistical parameters (determination coefficient, slope coefficient and F test) of the regression model adjusted for estimated and measured flow data. After calibration and validation of the model, new simulations were carried out for three different land use scenarios: a scenario in compliance with the law (C1), assuming the preservation of PPAs (permanent preservation areas); an optimistic scenario (C2), which considers the watershed to be almost entirely covered by native vegetation; and a pessimistic scenario (C3), in which the watershed would be almost entirely covered by pasture. The scenarios C1, C2 and C3 represent a soil cover of native forest of 76, 97 and 0 %, respectively. The results were compared with the simulation, considering the real scenario (C0) with 54 % forest cover. The Nash-Sutcliffe coefficients were 0.65 and 0.70 for calibration and validation, respectively, indicating satisfactory results in the flow simulation. A mean reduction of 10 % of the native forest cover would cause a mean annual increase of approximately 11.5 mm in total runoff at the watershed outlet. Reforestation would ensure minimum flows in the dry period and regulate the maximum flow of the main watercourse of the watershed.
Resumo:
A mathematical model is developed for gas-solids flows in circulating fluidized beds. An Eulerian formulation is followed based on the two-fluids model approach where both the fluid and the particulate phases are treated as a continuum. The physical modelling is discussed, including the formulation of boundary conditions and the description of the numerical methodology. Results of numerical simulation are presented and discussed. The model is validated through comparison to experiment, and simulation is performed to investigate the effects on the flow hydrodynamics of the solids viscosity.
Resumo:
The understanding of unsaturated soil water flow at process-level is essential to develop proper management actions for environmental protection in agricultural systems. One important tool for simulation of soil water flow that has been used worldwide is the SWAP model. The aim of this work was to test and to calibrate the SWAP model by inverse modeling to describe moisture profiles in a Brazilian very clayey Latossol in Dourados, State of Mato Grosso do Sul, Brazil. The SWAP model was tested in an experimental field of 0.09 ha cultivated with soybean and soil profiles were sampled eight times between December 2006 and October 2007. The SWAP input values (i.e. soil water retention curves and meteorological data) were based on in-situ measurements. Simulations with uncalibrated soil water retention curves resulted in moisture profiles that were too wet for almost all sampling dates, in particular between 0-10 cm depth. After calibration of soil water retention curves, there was a good improvement in the simulated moisture profiles, which were within the range of measured values for almost all depths and sampling dates.
Resumo:
The objective of this study was to model mathematically and to simulate the dynamic behavior of an auger-type fertilizer applicator (AFA) in order to use the variable-rate application (VRA) and reduce the coefficient of variation (CV) of the application, proposing an angular speed controller θ' for the motor drive shaft. The input model was θ' and the response was the fertilizer mass flow, due to the construction, density of fertilizer, fill factor and the end position of the auger. The model was used to simulate a control system in open loop, with an electric drive for AFA using an armature voltage (V A) controller. By introducing a sinusoidal excitation signal in V A with amplitude and delay phase optimized and varying θ' during an operation cycle, it is obtained a reduction of 29.8% in the CV (constant V A) to 11.4%. The development of the mathematical model was a first step towards the introduction of electric drive systems and closed loop control for the implementation of AFA with low CV in VRA.
Resumo:
Hydrological models are important tools that have been used in water resource planning and management. Thus, the aim of this work was to calibrate and validate in a daily time scale, the SWAT model (Soil and Water Assessment Tool) to the watershed of the Galo creek , located in Espírito Santo State. To conduct the study we used georeferenced maps of relief, soil type and use, in addition to historical daily time series of basin climate and flow. In modeling were used time series corresponding to the periods Jan 1, 1995 to Dec 31, 2000 and Jan 1, 2001 to Dec 20, 2003 for calibration and validation, respectively. Model performance evaluation was done using the Nash-Sutcliffe coefficient (E NS) and the percentage of bias (P BIAS). SWAT evaluation was also done in the simulation of the following hydrological variables: maximum and minimum annual daily flowsand minimum reference flows, Q90 and Q95, based on mean absolute error. E NS and P BIAS were, respectively, 0.65 and 7.2% and 0.70 and 14.1%, for calibration and validation, indicating a satisfactory performance for the model. SWAT adequately simulated minimum annual daily flow and the reference flows, Q90 and Q95; it was not suitable in the simulation of maximum annual daily flows.
Resumo:
The main objective of this work is to analyze the importance of the gas-solid interface transfer of the kinetic energy of the turbulent motion on the accuracy of prediction of the fluid dynamic of Circulating Fluidized Bed (CFB) reactors. CFB reactors are used in a variety of industrial applications related to combustion, incineration and catalytic cracking. In this work a two-dimensional fluid dynamic model for gas-particle flow has been used to compute the porosity, the pressure, and the velocity fields of both phases in 2-D axisymmetrical cylindrical co-ordinates. The fluid dynamic model is based on the two fluid model approach in which both phases are considered to be continuous and fully interpenetrating. CFB processes are essentially turbulent. The model of effective stress on each phase is that of a Newtonian fluid, where the effective gas viscosity was calculated from the standard k-epsilon turbulence model and the transport coefficients of the particulate phase were calculated from the kinetic theory of granular flow (KTGF). This work shows that the turbulence transfer between the phases is very important for a better representation of the fluid dynamics of CFB reactors, especially for systems with internal recirculation and high gradients of particle concentration. Two systems with different characteristics were analyzed. The results were compared with experimental data available in the literature. The results were obtained by using a computer code developed by the authors. The finite volume method with collocated grid, the hybrid interpolation scheme, the false time step strategy and SIMPLEC (Semi-Implicit Method for Pressure Linked Equations - Consistent) algorithm were used to obtain the numerical solution.
Resumo:
An axisymmetric supersonic flow of rarefied gas past a finite cylinder was calculated applying the direct simulation Monte Carlo method. The drag force, the coefficients of pressure, of skin friction, and of heat transfer, the fields of density, of temperature, and of velocity were calculated as function of the Reynolds number for a fixed Mach number. The variation of the Reynolds number is related to the variation of the Knudsen number, which characterizes the gas rarefaction. The present results show that all quantities in the transition regime (Knudsen number is about the unity) are significantly different from those in the hydrodynamic regime, when the Knudsen number is small.
Resumo:
The present work shows how thick boundary layers can be produced in a short wind tunnel with a view to simulate atmospheric flows. Several types of thickening devices are analysed. The experimental assessment of the devices was conducted by considering integral properties of the flow and the spectra: skin-friction, mean velocity profiles in inner and outer co-ordinates and longitudinal turbulence. Designs based on screens, elliptic wedge generators, and cylindrical rod generators are analysed. The paper describes in detail the experimental arrangement, including the features of the wind tunnel and of the instrumentation. The results are compared with experimental data published by other authors and with naturally developed flows.
Resumo:
OBJECTIVE To describe the migration flows of demand for public and private hospital care among the health regions of the state of Sao Paulo, Brazil. METHODS Study based on a database of hospitalizations in the public and private systems of the state of Sao Paulo, Southeastern Brazil, in 2006. We analyzed data from 17 health regions of the state, considering people hospitalized in their own health region and those who migrated outwards (emigration) or came from other regions (immigration). The index of migration effectiveness of patients from both systems was estimated. The coverage (hospitalization coefficient) was analyzed in relation to the number of inpatient beds per population and the indexes of migration effectiveness. RESULTS The index of migration effectiveness applied to the hospital care demand flow allowed characterizing health regions with flow balance, with high emigration of public and private patients, and with high attraction of public and private patients. CONCLUSIONS There are differences in hospital care access and opportunities among health regions in the state of Sao Paulo, Brazil.
Resumo:
The determination of the rabies neutralizing antibody (VNA) response after immunization against rabies is an acceptable index of the efficacy of a vaccine and a successful treatment. Several tests have been developed in attempt to improve the assessment of VNA, from mice inoculation to cell-culture fluorescence inhibition tests. All of them, however, present special difficulties in terms of reading or accuracy. The present study describes a neutralization test performed in cell-culture appraised by flow cytometry (FC). Serial dilutions of the serum samples were mixed in vitro with rabies virus before the addition of BHK-21 cells. After 24h-incubation, cells were released by trypsin treatment, fixed and permeabilized with a p-formaldehyde solution and stained with a rabies virus nucleocapsid protein-specific antibody conjugate. The percentage of virus infection inhibition caused by specific antibodies present in the serum were evaluated in a Beckton & Dickinson FACSCalibur® flow cytometer. A correlation curve between the IU/ml content and the percentage of infective inhibition was built with a reference serum and the VNA titers of serum samples were obtained by extrapolation. Titers obtained by FC and standard test showed an effective pairing results (p < 0.01), with a correlation coefficient (r) = 0.7. These results permit to envisage the FC as a suitable technique to evaluate VNA in sera from immunized animals and likely in human serum samples. Nevertheless, new studies comparing FC to gold-standard techniques are required for determining the FC values of Sensibility and Specificity .
Resumo:
SUMMARYAIDS-related cryptococcal meningitis continues to cause a substantial burden of death in low and middle income countries. The diagnostic use for detection of cryptococcal capsular polysaccharide antigen (CrAg) in serum and cerebrospinal fluid by latex agglutination test (CrAg-latex) or enzyme-linked immunoassay (EIA) has been available for over decades. Better diagnostics in asymptomatic and symptomatic phases of cryptococcosis are key components to reduce mortality. Recently, the cryptococcal antigen lateral flow assay (CrAg LFA) was included in the armamentarium for diagnosis. Unlike the other tests, the CrAg LFA is a dipstick immunochromatographic assay, in a format similar to the home pregnancy test, and requires little or no lab infrastructure. This test meets all of the World Health Organization ASSURED criteria (Affordable, Sensitive, Specific, User friendly, Rapid/robust, Equipment-free, and Delivered). CrAg LFA in serum, plasma, whole blood, or cerebrospinal fluid is useful for the diagnosis of disease caused by Cryptococcusspecies. The CrAg LFA has better analytical sensitivity for C. gattii than CrAg-latex or EIA. Prevention of cryptococcal disease is new application of CrAg LFA via screening of blood for subclinical infection in asymptomatic HIV-infected persons with CD4 counts < 100 cells/mL who are not receiving effective antiretroviral therapy. CrAg screening of leftover plasma specimens after CD4 testing can identify persons with asymptomatic infection who urgently require pre-emptive fluconazole, who will otherwise progress to symptomatic infection and/or die.
Resumo:
We report a rapid method for the flow cytometric quantitation of phagocytosis in heparinized complete peripherial blood (HCPB), using commercially available phycoerythrin-conjugated latex particles of 1µm diameter. The method is faster and shows greater reproducibility than Bjerknes' (1984) standard technique using propidium iodide-stained Candida albicans, conventionally applied to the leukocytic layer of peripherial blood but here modified for HCPB. We also report a modification of Bjerknes' Intracellular Killing Test to allow its application to HCPB.
Resumo:
Mycobaterium leprae infection was investigated in armadillos from the State of Espírito Santo, Brazil. The ML Flow test was performed on 37 nine-banded armadillos and positive results were found in 11 (29.7%). The ML Flow test may be used to identify possible sources of Mycobaterium leprae among wild armadillos.
Resumo:
O ML Flow e o ELISA PGL-I são testes sorológicos que detectam anticorpos IgM contra o glicolipídio fenólico I específico do Mycobacterium leprae. Para avaliar o comportamento destes testes em áreas endêmica e não endêmica para hanseníase foram estudados 351 voluntários no Brasil e no Chile, incluindo pacientes com hanseníase, controles sadios, portadores de outras doenças infecciosas, não infecciosas e dermatoses que fazem diagnóstico diferencial com hanseníase. O ponto de corte do ELISA foi estabelecido pelo método da Curva ROC (> 0,157). Em área endêmica, o ML Flow apresentou resultados positivos em 70% dos pacientes com hanseníase; o ELISA foi positivo em 53,3%. Em área não endêmica, o ML Flow foi negativo em todos os voluntários testados; o ELISA foi positivo em 4 voluntários. O ML Flow é um ensaio mais rápido, facilmente aplicável e, portanto, mais adequado para ser utilizado na Atenção Básica; o ELISA necessita, alem de uma infra-estrutura de laboratório adequada, pessoal treinado e especializado em sua execução.