26 resultados para Fire blight
em Scielo Saúde Pública - SP
Resumo:
Over the last 60 years, planting densities for apple have increased as improved management systems have been developed. Dwarfing rootstocks have been the key to the dramatic changes in tree size, spacing and early production. The Malling series of dwarfing rootstocks (M.9 and M.26) have been the most important dwarfing rootstocks in the world but are poorly adapted in some areas of the world and they are susceptible to the bacterial disease fire blight and the soil disease complex, apple replant disease which limits their uses in some areas. Rootstock breeding programs in several parts of the world are developing improved rootstocks with resistance to fire blight, and replant disease, and improved cold hardiness and yield efficiency. A second important trend has been the increasing importance of new cultivars. New cultivars have provided opportunities for higher prices until they are over-produced. A new trend is the "variety club" in which variety owners manage the production and marketing of a new unique cultivar to bring higher prices to the growers and variety owners. This has led to many fruit growers being unable to plant or grow some new cultivars. Important rootstock and cultivar genes have been mapped and can be used in marker assisted selection of future rootstock and cultivar selections. Other important improvements in apple culture include the development of pre-formed trees, the development of minimal pruning strategies and limb angle bending which have also contributed to the dramatic changes in early production in the 2nd-5th years after planting. Studies on light interception and distribution have led to improved tree forms with better fruit quality. Simple pruning strategies and labor positioning platform machines have resulted in partial mechanization of pruning which has reduced management costs. Improved plant growth regulators for thinning and the development of a thinning prediction model based on tree carbohydrate balance have improved the ability to produce the optimum fruit size and crop load. Other new plant growth regulators have also allowed control of shoot growth, control of preharvest fruit drop and control of fruit softening in storage after harvest. As we look to the future, there will be continued incremental improvement in our understanding of plant physiology that will lead to continued incremental improvements in orchard management but there is likely to be dramatic changes in orchard production systems through genomics research and genetic engineering. A greater understanding of the genetic control of dwarfing, precocity, rooting, vegetative growth, flowering, fruit growth and disease resistance which will lead to new varieties and rootstocks which are less expensive to grow and manage.
Resumo:
Fire represents an important disturbance to ant communities in areas of fire regime. Otherwise, little is known about the effects of fire on ant communities in areas of non-fire regimes, such as in the Amazonian region. We evaluated the long-term effect of fire on ant species richness in a rain forest (Bacaba Plateau) burned 15-years ago and compare our data with the data of primary unburned forest. A total of 85 ant species distributed in 21 genera and 14 tribes were collected; among them, 72 and 44 species were found on the litter and vegetation, respectively. The fire damaged forest studied supports an intermediate richness of ants when compared to a primary unburned rain forest in the same region. A comparative analysis of ant species richness showed that the Bacaba Plateau presented a different ant fauna when compared with the primary unburned forests, suggesting that fire can alter ant species composition. Although, our results cannot be conclusive on the effects of fire on ant community, they represent a pioneer data on human induced fire in tropical rain forests.
Resumo:
Eucalyptus Shoot Blight in the Vale do Rio Doce (ESBVRD) is an anomaly that leads to reduced growth and, in more extreme cases, to death of eucalyptus plants. Initially diagnosed in plantations in the region of the Vale do Rio Doce, in the State of Minas Gerais, Brazil, this problem has also been found in plantations in other regions of the country and even in other countries. Although the symptoms of this anomaly are well-known, its causes are not yet understood. The aim of this study was to evaluate the cause-effect relationship between accumulation of manganese (Mn) in eucalyptus clones and ESBVRD. Characterization of the environment in areas of greater occurrence of this problem in regard to soil, climate and fluctuation of the water table was undertaken in eucalyptus plantations of the Celulose Nipo-brasileira S.A. (Cenibra) company in the region of the Vale do Rio Doce. Plant tissues were sampled in two situations. In the first situation, diagnosis occurred in the initial phase of the anomaly in clones with differentiated tolerance to the problem; in the second situation, diagnosis was made in a single clone, considered to be sensitive, in two time periods - in the phase with the strong presence of symptoms and in the recovery phase, in areas of occurrence and in areas of escape from the problem. The most ESBVRD-sensitive clone showed much higher (4.8 times higher) leaf Mn contents than more tolerant clones. In plants with the anomaly, Mn leaf contents were greater than 3,070 mg kg-1, much greater than the quantity found in those without the anomaly (734 mg kg-1). In the period in which the symptoms began to wane, there was a sharp decline in leaf Mn contents, from 2,194 to 847 mg kg-1. Manganese content in the above ground part and plant litter (44.4 g ha-1) in the area of occurrence of the anomaly was three times greater than that found in these same components (14.1 g ha-1) in the area of absence of the symptom. Based on the evidence found, such as the existence of environmental conditions favorable to high Mn availability to the plants in the areas of greatest incidence of ESBVRD, greater uptake of Mn in sensitive clones and in plants with symptoms, and a synchronism between the intensity of symptoms of ESBVRD and leaf Mn contents, it may be inferred that temporary excess of Mn in eucalyptus plants is closely related to ESBVRD.
Resumo:
The objective of this work was to study the effects of fire on net N mineralization and soil microbial biomass in burned and unburned cerrado stricto sensu sites. The study was carried out from April 1998 to April 2000. The pH values were significantly higher in the burned site while soil moisture content was significantly higher in the unburned site (P<0.05). The soil C/N ratio was 22/1 and the available NO3-N ranged between 1.5 and 2.8 mg kg-¹ dry weight. However, the NH4-N concentration ranged between 3 and 34 mg kg-1 dry weight in the burned site and between 3 and 22 mg kg-1 dry weight in the unburned site. The NH4-N increased after fire, but no significant changes were observed for NO3-N (P<0.05). The NO3-N accumulation occurred in short periods during the rainy season. The rates of net N mineralization increased during the rainy season while reductions in soil microbial biomass were observed at both sites. This suggested that the peak in microbial activities occurred with the first rain events, with an initial net immobilization followed by net mineralization. Both sites presented the same pattern for mineralization/immobilization, however, the amount of inorganic-N cycled annually in unburned site was 14.7 kg ha-1 per year while the burned site presented only 3.8 kg ha-¹ of inorganic-N, one year after the burning.
Resumo:
The objective of this work was to evaluate in vitro and in vivo biocontrol of bacterial spot (Xanthomonas vesicatoria) and early blight (Alternaria solani) by the epiphytic bacteria Paenibacillus macerans and Bacillus pumilus. Tomato plants were previously sprayed with epiphytic bacteria, benzalkonium chloride and PBS buffer and, after four days, they were inoculated with A. solani and X. vesicatoria. To determine the phytopathogenic bacteria population, leaflet samples were collected from each treatment every 24 hours, for seven days, and plated on semi-selective medium. The effect of epiphytic bacteria over phytopathogens was performed by the antibiosis test and antagonistic activity measured by inhibition zone diameter. The epiphytic and benzalkonium chloride drastically reduced the severity of early blight and bacterial spot in comparison to the control (PBS). In detached leaflets, the epiphytic bacteria reduced in 70% the number of phytopathogenic bacteria cells in the phylloplane. The antibiosis test showed that the epiphytic bacteria efficiently inhibit the phytopathogens growth. In all the bioassays, the epiphytic bacteria protect tomato plants against the phytopathogens
Resumo:
The objective of this work was to assess the performance of panel clones under crowns resistant to South American leaf blight (Microcyclus ulei). The experiment was carried out with 18 panel clones crown-budded with Hevea pauciflora x H. guianensis, in a Xanthic Ferralsol (Oxisol) in Manaus, AM, Brazil. The following parameters were evaluated: dry rubber yield, plant nutritional status, and anatomical and physiological characteristics of the latex vessels. In the first three years of evaluation, the panel clones IAN 2878, IAN 2903, CNS AM 7905, CNS AM 7905 P1, and PB 28/59 showed the highest dry rubber yield potential, while the clones IAN 6158, IAN 6590, and IAN 6515 should not be recommended for crown budding. Higher potassium and copper foliar content in panel clones were associated to an increase in dry rubber yield. The simultaneous evaluation of anatomical and physiological characteristics of latex is fundamental for the selection of panel clones in the Amazon region. Crown budding is an efficient technology for South American leaf blight management in endemic regions.
Resumo:
The objective of this work was to evaluate the effects of fire regimes and vegetation cover on the structure and dynamics of soil microbial communities, through phospholipid fatty acid (PLFA) analysis. Comparisons were made between native areas with different woody covers ("cerrado stricto sensu" and "campo sujo"), under different fire regimes, and a 20-year-old active palisadegrass pasture in the Central Plateau of Brazil. Microbial biomass was higher in the native plots than in the pasture, and the highest monthly values were observed during the rainy season in the native plots. No significant differences were observed between fire regimes or between communities from the two native vegetation types. However, the principal component (PC) analysis separated the microbial communities by vegetation cover (native x pasture) and season (wet x dry), accounting for 45.8% (PC1 and PC3) and 25.6% (PC2 and PC3), respectively, of the total PLFA variability. Changes in land cover and seasonal rainfall in Cerrado ecosystems have significant effects on the total density of soil microorganisms and on the abundance of microbial groups, especially Gram-negative and Gram-positive bacteria.
Resumo:
The objective of this work was to evaluate the distribution pattern and composition of soil organic matter (SOM) and its physical pools of Leptosols periodically affected by fire over the last 100 years in South Brazil. Soil samples at 0-5, 5-10, and 10-15 cm depths were collected from the following environments: native pasture without burning in the last year and grazed with 0.5 livestock per hectare per year (1NB); native pasture without burning in the last 23 years and grazed with 2.0 livestock per hectare per year (23NB); and an Araucaria forest (AF). Physical fractionation was performed with the 0-5 and 5-10 cm soil layers. Soil C and N stocks were determined in the three depths and in the physical pools, and organic matter was characterized by infrared spectroscopy and thermogravimetry. The largest C stocks in all depths and physical pools were found under the AF. The 23NB environment showed the lowest soil C and N stocks at the 5-15 cm depth, which was related to the end of burning and to the higher grazing intensity. The SOM of the occluded light fraction showed a greater chemical recalcitrance in 1NB than in 23NB. Annual pasture burning does not affect soil C stocks up to 15 cm of depth.
Resumo:
The objective of this work was to assess the possible transport of cyanogenic glycosides from leaves of rubber tree crown clones (Hevea spp.) resistant to South American leaf blight to the trunk of the panel clones in which they are grafted. The cyanogenic potential (HCNp) of the crown clones was determined in the trunk bark, at different distances from the cambium, and its gradient was evaluated along the trunk. The correlation between the HCNp of the crown leaves and that of the trunk bark was also evaluated. HCNp determined in leaves showed a wide range variation in the species studied as crown clones, with the lowest values registered in H. nitida clones, and the highest ones in H. rigidifolia. In the trunk bark, the tissue layer nearer the cambium showed higher HCNp values. A positive basipetal gradient was observed along the trunk, i.e., there was an increase in HCNp from the apex toward the base. Although the grafted crowns influence the cyanogenic potential of the trunk bark of panel clones, the absence of correlation between the HCNp of the leaves and trunk bark indicates that the crown is not the main source of the cyanogenic glycosides found in the trunk.
Resumo:
Persimmon anthracnose has been a great concern to Brazilian producers. This study aimed to identify and characterized the causal species from Brazilian persimmons byassessing morphological and molecular characteristics and pathogenicity tests. Five fungal isolatesobtained from diseased twigs and fruits were identified as Colletotrichum horii, based on morphologicalcharacteristics and nucleotide sequences of ITS region. Inoculation tests revealed that the fungal isolates caused necrotic spots followed by defoliation of leaves, blight of twigs and buds of potted persimmon plants.
Resumo:
Surveys of soybean (Glycine max) seed grown in South Brazil revealed infection with Fusarium graminearum. To determine if members of this complex were pathogenic to soybean, six strains derived from soybean were added to soil at a rate of 10³ macroconidia/ ml or individual pods were inoculated with 10(4) macroconidia/ml. Seedlings grown in infested soil developed small necrotic lesions in the crown and upper roots. Pods inoculated with conidia developed large (>1 cm), dark brown, necrotic lesions. Younger pods inoculated with the fungus blighted and dropped from the plant. Strains of the F. graminearum complex recovered from lesions on the crown, roots and pods of soybean plants were identified as lineage 1, 2 or 8 by obtaining the DNA sequence from the EF1-alpha gene and comparing it to strains of the known lineage. Two strains of F. graminearum lineage 7 from the U.S. caused similar symptoms of the disease on soybean. Mycotoxin tests on soybean and wheat (Triticum aestivum) indicate that most Brazilian strains produce nivalenol as the major trichothecene mycotoxin rather than deoxynivalenol. In addition, strains from lineages 2 and 8 produce the novel trichothecene, 3-acetylnivalenol.
Resumo:
The essential oil extracted from mustard (Brassica rapa) seeds was evaluated for its effect on suppression of Rhizoctonia solani growth in vitro, and in field soils, for reducing saprophytic substrate colonization and seedling damping off and blight using snap beans as indicator plant, the in vitro growth was completely inhibited at a concentration of 50 mul/l. The saprophytic substrate colonization in soils 24 h after treatment was drastically reduced to 45% at 150 mul/kg soil concentration, in contrast to 100% colonization at concentrations of 0, 50, or 75 mul/kg. This recovery rate gradually declined to 6% and 60%, respectively, in nine days. A control of pre and post-emergence seedling damping off and blight in common beans (Phaseolus vulgaris), without any apparent phytotoxic effect was achieved by irrigating R. solani infested soils with water containing the emulsified essential oil to provide 150 mul/l soil volume ten days prior to planting, gave over 95%. The effect of the mustard essential oil was not influenced by the physical soil texture, and it appears to be a good substitute for methyl bromide fumigation in nurseries for seedling production.
Resumo:
Fusarium Head Blight (FHB) is a disease of great concern in wheat (Triticum aestivum). Due to its relatively narrow susceptible phase and environmental dependence, the pathosystem is suitable for modeling. In the present work, a mechanistic model for estimating an infection index of FHB was developed. The model is process-based driven by rates, rules and coefficients for estimating the dynamics of flowering, airborne inoculum density and infection frequency. The latter is a function of temperature during an infection event (IE), which is defined based on a combination of daily records of precipitation and mean relative humidity. The daily infection index is the product of the daily proportion of susceptible tissue available, infection frequency and spore cloud density. The model was evaluated with an independent dataset of epidemics recorded in experimental plots (five years and three planting dates) at Passo Fundo, Brazil. Four models that use different factors were tested, and results showed all were able to explain variation for disease incidence and severity. A model that uses a correction factor for extending host susceptibility and daily spore cloud density to account for post-flowering infections was the most accurate explaining 93% of the variation in disease severity and 69% of disease incidence according to regression analysis.