196 resultados para Fenton Catalyst
em Scielo Saúde Pública - SP
Resumo:
In this work the preparation and characterization of a supported catalyst intended for degradation of reactive dyes by Fenton-like processes is described. The photocatalyst was prepared by immobilization of Fe3+ into the molecular sieve (4A type) surface and characterized by x-ray diffractometry and infrared, Mössbauer and EPR spectroscopy. The solid containing 0.94% (w/w) of ferric ions was used in degradation studies of aqueous reactive-dyes samples with really promissory results. Generally, Vis-assisted photochemical processes leads to almost total decolorization of all tested dyes at reaction times lower than 30 min. It was also observed that the iron-molecular sieve matrix can be reused.
Resumo:
A flow injection spectrophotometric system was projected for monitoring hydrogen peroxide during photodegradation of organic contaminants in photo-Fenton processes (Fe2+/H2O2/UV). Sample is injected manually in a carrier stream and then receives by confluence a 0.1 mol L-1 NH4VO3 solution in 0.5 mol L-1 H2SO4 medium. The product formed shows absorption at 446 nm which is recorded as a peak with height proportional to H2O2 concentration. The performance of the proposed system was evaluated by monitoring the consumption of H2O2 during the photodegradation of dichloroacetic acid solution by foto-Fenton reaction.
Resumo:
In this work the application of the photo-Fenton process for the treatment of washing water of herbicide containers using solar energy was studied. The influence of the H2O2 concentration and the iron source on the degradation of tebuthiuron and diuron was investigated. The degradation efficiency was strongly affected by the iron source. Using ferrioxalate, total mineralization of diuron and tebuthiuron was obtained either for the individual compounds or for a mixture containing both herbicides, while when using Fe(NO3)3, the maximum mineralization reached for both herbicides was only 50%.
Resumo:
Experimental procedures based on factorial design and surface response methodology were applied to establishe experimental conditions for the decomposition of a 1:400 (v/v) Supocade® (chlorfenvinphos 13.8% and cypermethrin 2.6%) solution, used to control cattle ticks. Experiments exploring photo-oxidative reactions were performed with and without UV radiation, fixing exposition time and pesticide volume, and varying the oxidant mixture. The use of 3.6 mmol L-1 Fe2+ plus 1.9 mol L-1 H2O2 plus UV radiation provided destruction of 94% of the original carbon content and reduction of aromatic, aliphatic and carbinolic compounds, evaluated by determination of residual carbon content by ICP OES and NMR analysis.
Resumo:
Wastewater and soil treatment processes based on Fenton's reagent have gained great attention in recent years due to its high oxidation power. This review describes the fundaments of the Fenton and photo-Fenton processes and discusses the main aspects related to the degradation of organic contaminants in water such as the complexation of iron, the use of solar light as the source of irradiation and the most important reactor types used. An overview of the main applications of the process to a variety of industrial wastewater and soil remediations is presented.
Resumo:
The mechanism and applications of the Fenton reaction assisted by iron-reducing phenolic compounds (IRPC) is reviewed. The presence of IRPC leads to the formation of a larger number of free radicals. The relationship between the redox potential and the IRPC structure is discussed. The effect of humic substances in the degradation of xenobiotics is also included, since these substances are able to reduce metallic ions. The natural occurrence of Fe3+/H2O2/IRPC in wood biodegradation processes, as well as their application is also discussed. The review concludes with the advantages of the Fe3+/H2O2/IRPC systems and some considerations for further process optimization and their applications at industrial levels.
Resumo:
The remediation of groundwater containing organochlorine compounds was evaluated using a reductive system with zero-valent iron, and the reductive process coupled with Fenton's reagent. The concentration of the individual target compounds reached up to 400 mg L-1 in the sample. Marked reductions in the chlorinated compounds were observed in the reductive process. The degradation followed pseudo-first-order kinetics in terms of the contaminant and was dependent on the sample contact time with the solid reducing agent. An oxidative test with Fenton's reagent, followed by the reductive assay, showed that tetrachloroethylene was further reduced up to three times the initial concentration. The destruction of chloroform, however, demands an additional treatment.
Resumo:
Dairy wastewater is characterized by frequent episodes of drastic increases of organic content, giving rise to bulking filamentous bacteria and compromising the biological treatment process. This study reports the reduction of organic content of such wastewater by the application of the solar photo-Fenton process. For a wastewater containing 335, 2627 or 5400 mg C L-1 between 90% and 50% of the organic carbon content were removed after 3.5 h irradiation. The results show that the solar photo-Fenton process can be a good alternative for the abatement of organic content of dairy wastewater, especially in cases of organic content fluctuation, allowing an efficient biological treatment.
Resumo:
In this work Fenton and photo-Fenton processes for textile dye degradation were investigated using iron (II) immobilized in alginate spheres. Photomicrographs obtained by scanning electron microscopy showed an irregular and porous surface with a homogeneous distribution of iron. The Fenton process was used to evaluate the degradation efficiency of reactive dyes and this procedure showed a low degradation effect. The association of artificial visible light or solar radiation in the Fenton process (foto-Fenton process) showed degradation ratios of 70 and 80% respectively in 45 min. It was also observed that the iron-alginate matrix can be reused.
Resumo:
COD is an important parameter to estimate the concentration of organic contaminants. The closed system technique with the use of K2Cr2O7 is the most important one, however, it has the inconvenience to suffer positive chemical interferences from inorganic compounds such as Fe2+ and H2O2 (not enough reported in the literature). This paper considers a statistical-experimental set capable to validate a empirical mathematical model generated from a 23 experimental design, in the presence of Fe2+ and H2O2. The t test shows that mathematical model has 99,99999% confidence degree and the experimental validation test indicates absolute mean error of 4,70%.
Resumo:
The study of the electrochemical degradation of the ranitidine was developed using an electrochemical reactor with a gas diffusion electrode (GDE) as cathode. The electrolysis experiments was performed at constant current (1 < A < 10) and flow rate of 200 L h-1. The process of drug degradation, chemical/electrochemical and electro-Fenton ways, using electrochemical reactor showed best efficiency at current values of > 4 A. The process reached a production of 630 mg L-1 of the H2O2 at 7 A. The ranitidine concentrations was reduced in 99.9% (HPLC) and chemical oxygen demand (COD) was reduced in 86.7% by electro-Fenton.
Resumo:
This paper describes a degradation study of the anti-inflammatory sodium diclofenac in aqueous medium using an electro-chemical flow reactor with a gas diffusion electrode as cathode. Two degradation processes were compared: by H2O2 electro-generated and H2O2 electro-generated/Fe(II). Concentration of sodium diclofenac was determined during the experiments by HPLC. The changes in chemical oxigen demand (COD) were also evaluated. Under the specific reaction conditions, 350 mg L-1 of H2O2 was electro-generated and 99.2% of sodium diclofenac was degradated, with 27.4% COD reduction. At the same conditions, but using Fe(II), drug degradation was 99.4% and the COD reduction was 63.2%.
Resumo:
In this work the potentiality of photo-Fenton processes were investigated toward the degradation of aromatic hydrocarbons (BTXs) from water contaminated with gasoline. The main results demonstrated that BTXs can be quickly degraded by photo-Fenton process assisted by solar or artificial UV-A radiation, degradation that leads to generation of characteristic phenolic transient species (ie. phenol, hydroquinone and catechol). In the treatment of contaminated water by photo-Fenton processes assisted by solar light, complete BTXs removal was observed in reaction times of about 5 min. Mineralization of about 90% was also observed by applying a multiple H2O2 addition system.
Resumo:
The use of the Fenton's reagent process has been investigated for the remediation of a Brazilian soil contaminated by diesel. Laboratory experiments were conducted in batch experiments. Slurries, consisting of 10 g of diesel-contaminated soil and 30 mL of Fenton's Reagent (0.41 mol L-1 H(2)0(2) and 0.18 mol L-1 FeSO4). The experiments were monitored during 24, 48 and 72 h. The efficiency of the Fenton treatment was dependent on the time of contact between soil and Fenton's reagents and matrix characteristics, probably iron content. Data suggested that no iron addition is needed for the application of Fenton-like treatment for the remediation of diesel-contaminated iron rich soils after 72 h reaction.
Resumo:
From the environmental point of view, the textile sector is outstanding for the generation of large amounts of biorecalcitrant effluents. In this paper the textile effluent biodegradability, both before and after its treatment with Fenton's Reagent, were compared by means of biologic tests. These tests showed that the Fenton treatment lowered the biodegradabilty of practically all tested effluents, except one specific effluent from a scouring bath of polyester fibers, which achieved a 93% COD removal. This removal was due to a significant phase separation (oil/water).