11 resultados para Fayyum,ASTER,classificazione immagini satellitari,paleoambienti
em Scielo Saúde Pública - SP
The combined use of reflectance, emissivity and elevation Aster/Terra data for tropical soil studies
Resumo:
Reflectance, emissivity and elevation data of the sensor ASTER (Advanced Spaceborne Thermal Emission and Reflection Radiometer)/Terra were used to characterize soil composition variations according to the toposequence position. Normalized data of SWIR (shortwave infrared) reflectance and TIR (thermal infrared) emissivity, coupled to a soil-fraction image from a spectral mixture model, were evaluated to separate bare soils from nonphotosynthetic vegetation. Regression relationships of some soil properties with reflectance and emissivity data were then applied on the exposed soil pixels. The resulting estimated values were plotted on the ASTER-derived digital elevation model. Results showed that the SWIR bands 5 and 6 and the TIR bands 10 and 14 measured the clay mineral absorption band and the quartz emissivity feature, respectively. These bands improved also the discrimination between nonphotosynthetic vegetation and soils. Despite the differences in pixel size and field sampling size, some soil properties were correlated with reflectance (R² of 0.65 for Al2O3 in band 6; 0.61 for Fe2O3 in band 3) and emissivity (R² of 0.65 for total sand fraction in the 10/14 band ratio). The combined use of reflectance, emissivity and elevation data revealed variations in soil composition with topography in specific parts of the landscape. From higher to lower slope positions, a general decrease in Al2O3 and increase in total sand fraction was observed, due to the prevalence of Rhodic Acrustox at the top and its gradual transition to Typic Acrustox at the bottom.
Resumo:
O objetivo deste trabalho foi avaliar a eficiência da aplicação do modelo SEBAL em estimar os fluxos de energia em superfície e a evapotranspiração diária, numa extensa área de cultivo de arroz irrigado, no município de Paraíso do Sul, RS, tendo como parâmetros dados do sensor ASTER. As variáveis estudadas constituem importantes parâmetros do tempo e do clima em estudos agrometeorológicos e de racionalização no uso da água. As metodologias convencionais de estimativa desses parâmetros são pontuais e geralmente apresentam incertezas, que aumentam quando o interesse é o comportamento espacial desses parâmetros. Aplicou-se o algoritmo "Surface Energy Balance Algorithm for Land" (SEBAL), em uma imagem do sensor "Advanced Spaceborne Thermal Emission and Reflection Radiometer" (ASTER). As estimativas obtidas foram comparadas com medições em campo, realizadas por uma estação micrometeorológica localizada no interior da área de estudo. As estimativas mais precisas foram as de fluxo de calor sensível e de evapotranspiração diária, e a estimativa que apresentou maior erro foi a do fluxo de calor no solo. A metodologia empregada foi capaz de reproduzir os fluxos de energia em superfície de maneira satisfatória para estudos agrometeorológicos e de rendimento de culturas.
Resumo:
This paper aims to assess the effectiveness of ASTER imagery to support the mapping of Pittosporum undulatum, an invasive woody species, in Pico da Vara Natural Reserve (S. Miguel Island, Archipelago of the Azores, Portugal). This assessment was done by applying K-Nearest Neighbor (KNN), Support Vector Machine (SVM) and Maximum Likelihood (MLC) pixel-based supervised classifications to 4 different geographic and remote sensing datasets constituted by the Visible, Near-Infrared (VNIR) and Short Wave Infrared (SWIR) of the ASTER sensor and by digital cartography associated to orography (altitude and "distance to water streams") of which the spatial distribution of Pittosporum undulatum directly depends. Overall, most performed classifications showed a strong agreement and high accuracy. At targeted species level, the two higher classification accuracies were obtained when applying MLC and KNN to the VNIR bands coupled with auxiliary geographic information use. Results improved significantly by including ecology and occurrence information of species (altitude and distance to water streams) in the classification scheme. These results show that the use of ASTER sensor VNIR spectral bands, when coupled to relevant ancillary GIS data, can constitute an effective and low cost approach for the evaluation and continuous assessment of Pittosporum undulatum woodland propagation and distribution within Protected Areas of the Azores Islands.
Resumo:
La classificazione delle scienze di Pietro d'Abano costituisce un'interessante riformulazione della classificazione analoga, proposta da Aristotele in Metaph. VI, e della teoria degli abiti dianoetici, proposta da Aristotele in Eth. Nic. VI. Come risulta dal Conciliator per quanto concerne la medicina e dal Lucidator per quanto concerne l'astronomia, Pietro segue la classificazione aristotelica e le interpretazioni che di essa erano state date nel medioevo (dottrina dei tre gradi di astrazione e distinzione tra methodus compositiva e methodus resolutiva), aggiungendovi come contributo originale l'introduzione di una parte pratica sia nella medicina che nell'astronomia (astronomia iudicialis), dove quest'ultima deriva da Tolomeo e dagli Arabi.
Resumo:
People customarily use the extracts of plants known to have antidiarrhoeal effects without any scientific base to explain the action of the extract. For this reason, an investigation was undertaken with a view to determining the efficacy of the effects of the brute aqueous extract (BAE) of the leaves of Psidium guajava (guava), Stachytarpheta cayenensis (bastard vervain), Polygonum punctatum (water. smartweed), Eugenia uniflora (Brazil or Surinam cherry) and Aster squamatus (zé-da-silva) on the intestinal transport of water in rats and on the gastrointestinal propulsion in mice. With the exception of the BAE of S. cayenensis, all other BAE's have increased the absorption of water in one or more intestinal portion in relation to the control group. All tested BAE, except that of P. punctatum, reduced the gastrointestinal propulsion in relation to that of the control group. The results indicate that the BAE of the leaves of P. guajava, S. cayenensis, P. punctatum, E. uniflora and A. squamatus have a potential antidiarrhoeic effect to be confirmed by additional investigations in animals infected with enteropathogenic agents.
Resumo:
As espécies de Termitococcinae são revisadas. Esta subfamília, restrita à Região Neotropical, é composta de cinco espécies válidas, incluídas em dois gêneros: Termitococcus aster Silvestri, 1901, Termitococcus carratoi Silvestri, 1936, Eurhizococcus brasiliensis (Wille, 1922), Eurhizococcus brevicornis (Silvestri, 1901) e Eurhizococcus colombianus Jakubski, 1965. O estudo traz a redescrição das espécies da subfamília, incluindo a caracterização morfológica dos três estágios de desenvolvimento (ninfa ambulatória, cisto e fêmea adulta). Chaves de identificação e ilustrações são também incluídas. São designados lectótipos e paralectótipos para duas espécies.
Resumo:
Os modelos digitais de elevação (MDEs) são fontes fundamentais para correlacionar a ocorrência e distribuição de solos com a paisagem pelo mapeamento digital de solos (MDS). A influência dos tipos e das resoluções dos MDEs na capacidade de predição dos modelos preditores de classes de solo ainda é pouco estudada. Neste estudo, foram avaliados e comparados os efeitos de diferentes MDEs na predição de ocorrência de unidades de mapeamento de solo (UM). Foram correlacionados 12 atributos do terreno derivados de diferentes MDEs com a ocorrência de UM. Os MDEs utilizados foram os oriundos dos projetos SRTM v4.1, ASTER GDEM v2, TOPODATA e Brasil em Relevo, e os MDEs gerados a partir de curvas de nível na escala de 1:50.000, com resoluções de 30 e 90 m. Os modelos preditores foram treinados por árvore de decisão (Simple Cart) com dados amostrados em 4.280 pontos aleatórios contendo informações dos solos extraídos de um mapa convencional de solos na escala 1:20.000 e 12 atributos do terreno derivados de seis MDEs com tamanhos de pixel de 30 e 90 m. A validação dos modelos preditores de UM foi realizada com a totalidade dos dados da área. Os atributos do terreno que melhor explicaram a ocorrência das UM foram elevação, declividade, comprimento de fluxo e orientação das vertentes. Os MDEs com tamanho de pixel de 30 m geraram correlações solo-paisagem menos acuradas. Os modelos preditores mais acurados e com maior número de UM estimadas foram os gerados a partir dos MDEs com resolução espacial de 90 m (SRTM v4.1 e CN90), sendo esses os MDEs mais indicados para o MDS, quando predominarem relevos plano e suave ondulado.
Resumo:
The objective of this work was to evaluate the use of multispectral remote sensing for site-specific nitrogen fertilizer management. Satellite imagery from the advanced spaceborne thermal emission and reflection radiometer (Aster) was acquired in a 23 ha corn-planted area in Iran. For the collection of field samples, a total of 53 pixels were selected by systematic randomized sampling. The total nitrogen content in corn leaf tissues in these pixels was evaluated. To predict corn canopy nitrogen content, different vegetation indices, such as normalized difference vegetation index (NDVI), soil-adjusted vegetation index (Savi), optimized soil-adjusted vegetation index (Osavi), modified chlorophyll absorption ratio index 2 (MCARI2), and modified triangle vegetation index 2 (MTVI2), were investigated. The supervised classification technique using the spectral angle mapper classifier (SAM) was performed to generate a nitrogen fertilization map. The MTVI2 presented the highest correlation (R²=0.87) and is a good predictor of corn canopy nitrogen content in the V13 stage, at 60 days after cultivating. Aster imagery can be used to predict nitrogen status in corn canopy. Classification results indicate three levels of required nitrogen per pixel: low (0-2.5 kg), medium (2.5-3 kg), and high (3-3.3 kg).
Resumo:
O objetivo deste trabalho foi avaliar as informações obtidas das imagens do satélite Landsat/TM5, utilizando técnicas de Análise por Componentes Principais (ACP) e Fator de Iluminação oriundo de um Modelo de Elevação do Terreno, calculado a partir de imagens ASTER, no mapeamento de áreas de café em terreno montanhoso. As imagens utilizadas (três) foram corrigidas para o efeito da atmosfera e cobriram, temporalmente, o ciclo da cultura. Foram calculadas as componentes principais e escolhidas as duas primeiras, as quais possuíam 94% das informações, para a definição das amostras. As amostras resultantes da ACP foram utilizadas na classificação supervisionada cujo resultado foi comparado com uma classificação convencional e uma classificação multitemporal convencional. A acurácia das classificações foi realizada por meio do cálculo da Exatidão Global e do Coeficiente Kappa, tendo como base uma máscara da área cafeeira da região. Os resultados mostraram que a técnica de ACP foi efetiva no estabelecimento de classes de iluminação, assim como na escolha das amostras, apesar de estas não terem representado a área efetivamente classificada. Em função disto, as classificações foram mais acuradas, principalmente aquela que considerou todos os pixels de cada imagem classificada individualmente pelo método da ACP, confirmando a importância do aspecto multitemporabilidade .
Resumo:
The aim of this study was to compare the hydrographically conditioned digital elevation models (HCDEMs) generated from data of VNIR (Visible Near Infrared) sensor of ASTER (Advanced Spaceborne Thermal Emission and Reflection Radiometer), of SRTM (Shuttle Radar Topography Mission) and topographical maps from IBGE in a scale of 1:50,000, processed in the Geographical Information System (GIS), aiming the morphometric characterization of watersheds. It was taken as basis the Sub-basin of São Bartolomeu River, obtaining morphometric characteristics from HCDEMs. Root Mean Square Error (RMSE) and cross validation were the statistics indexes used to evaluate the quality of HCDEMs. The percentage differences in the morphometric parameters obtained from these three different data sets were less than 10%, except for the mean slope (21%). In general, it was observed a good agreement between HCDEMs generated from remote sensing data and IBGE maps. The result of HCDEM ASTER was slightly higher than that from HCDEM SRTM. The HCDEM ASTER was more accurate than the HCDEM SRTM in basins with high altitudes and rugged terrain, by presenting frequency altimetry nearest to HCDEM IBGE, considered standard in this study.