15 resultados para FULLERENE BULK HETEROJUNCTION
em Scielo Saúde Pública - SP
Resumo:
Macroporosity is often used in the determination of soil compaction. Reduced macroporosity can lead to poor drainage, low root aeration and soil degradation. The aim of this study was to develop and test different models to estimate macro and microporosity efficiently, using multiple regression. Ten soils were selected within a large range of textures: sand (Sa) 0.07-0.84; silt 0.03-0.24; clay 0.13-0.78 kg kg-1 and subjected to three compaction levels (three bulk densities, BD). Two models with similar accuracy were selected, with a mean error of about 0.02 m³ m-3 (2 %). The model y = a + b.BD + c.Sa, named model 2, was selected for its simplicity to estimate Macro (Ma), Micro (Mi) or total porosity (TP): Ma = 0.693 - 0.465 BD + 0.212 Sa; Mi = 0.337 + 0.120 BD - 0.294 Sa; TP = 1.030 - 0.345 BD 0.082 Sa; porosity values were expressed in m³ m-3; BD in kg dm-3; and Sa in kg kg-1. The model was tested with 76 datum set of several other authors. An error of about 0.04 m³ m-3 (4 %) was observed. Simulations of variations in BD as a function of Sa are presented for Ma = 0 and Ma = 0.10 (10 %). The macroporosity equation was remodeled to obtain other compaction indexes: a) to simulate maximum bulk density (MBD) as a function of Sa (Equation 11), in agreement with literature data; b) to simulate relative bulk density (RBD) as a function of BD and Sa (Equation 13); c) another model to simulate RBD as a function of Ma and Sa (Equation 16), confirming the independence of this variable in relation to Sa for a fixed value of macroporosity and, also, proving the hypothesis of Hakansson & Lipiec that RBD = 0.87 corresponds approximately to 10 % macroporosity (Ma = 0.10 m³ m-3).
Resumo:
Humic substances are the major components of soil organic matter. Among the three humic substance components (humic acid, fulvic acid, and humin), humin is the most insoluble in aqueous solution at any pH value and, in turn, the least understood. Humin has poor solubility mainly because it is tightly bonded to inorganic soil colloids. By breaking the linkage between humin and inorganic soil colloids using inorganic or organic solvents, bulk humin can be partially soluble in alkali, enabling a better understanding of the structure and properties of humin. However, the structural relationship between bulk humin and its alkaline-soluble (AS) and alkaline-insoluble (AIS) fractions is still unknown. In this study, we isolated bulk humin from two soils of Northeast China by exhaustive extraction (25 to 28 times) with 0.1 mol L-1 NaOH + 0.1 mol L-1 Na4P2O7, followed by the traditional treatment with 10 % HF-HCl. The isolated bulk humin was then fractionated into AS-humin and AIS-humin by exhaustive extraction (12 to 15 times) with 0.1 mol L-1 NaOH. Elemental analysis and solid-state 13C cross-polarization magic angle spinning nuclear magnetic resonance (13C CPMAS NMR) spectroscopy were used to characterize and compare the chemical structures of bulk humin and its corresponding fractions. The results showed that, regardless of soil types, bulk humin was the most aliphatic and most hydrophobic, AS-humin was the least aliphatic, and AIS-humin was the least alkylated among the three humic components. The results showed that bulk humin and its corresponding AS-humin and AIS-humin fractions are structurally differed from one another, implying that the functions of these humic components in the soil environment differed.
Resumo:
Under field conditions in the Amazon forest, soil bulk density is difficult to measure. Rigorous methodological criteria must be applied to obtain reliable inventories of C stocks and soil nutrients, making this process expensive and sometimes unfeasible. This study aimed to generate models to estimate soil bulk density based on parameters that can be easily and reliably measured in the field and that are available in many soil-related inventories. Stepwise regression models to predict bulk density were developed using data on soil C content, clay content and pH in water from 140 permanent plots in terra firme (upland) forests near Manaus, Amazonas State, Brazil. The model results were interpreted according to the coefficient of determination (R2) and Akaike information criterion (AIC) and were validated with a dataset consisting of 125 plots different from those used to generate the models. The model with best performance in estimating soil bulk density under the conditions of this study included clay content and pH in water as independent variables and had R2 = 0.73 and AIC = -250.29. The performance of this model for predicting soil density was compared with that of models from the literature. The results showed that the locally calibrated equation was the most accurate for estimating soil bulk density for upland forests in the Manaus region.
Resumo:
Soil quality indicators such as penetration resistance (PR) and bulk density (BD) are traditionally determined in a single undisturbed soil sample. The aim of this study was to assess the effect of PR measurements of undisturbed samples on the determination of BD in the same sample of two soils differing in clay contents. To this end, samples were collected from the 0.00-0.10 and 0.10-0.20 m layers of two soils of clayey and very clayey texture. Volumetric rings were used to collect a total of 120 undisturbed soil samples from each soil layer that were divided into two subsets containing 60 units each. One sample set, designated “perforated samples”, was used to determine PR and BD in the same undisturbed sample; the other, named “intact samples”, was used to determine BD only. Bulk density values for perforated and intact samples were compared by analysis of variance, using a completely randomized experimental design. Means were compared by the t-test at 5 %. The BD values for the clayey soil were similar in perforated and intact samples from the two layers. However, BD of the very clayey soil was lower in the perforated than in the intact samples at both depths. Therefore, PR and BD in clayey soils can be accurately determined in the same undisturbed sample whereas in very clayey soils, different samples are required for this purpose.
Resumo:
Soil aggregation and the distribution of total organic carbon (TOC) may be affected by soil tillage and cover crops. The objective of this study was to determine the effects of crop rotation with cover crops on soil aggregation, TOC concentration in the soil aggregate fractions, and soil bulk density under a no-tillage system (NTS) and conventional tillage system (CTS, one plowing and two disking). This was a three-year study with cover crop/rice/cover crop/rice rotations in the Brazilian Cerrado. A randomized block experimental design with six treatments and three replications was used. The cover crops (treatments) were: fallow, Panicum maximum, Brachiaria ruziziensis, Brachiaria brizantha, and millet (Pennisetum glaucum). An additional treatment, fallow plus CTS, was included as a control. Soil samples were collected at the depths of 0.00-0.05 m, 0.05-0.10 m, and 0.10-0.20 m after the second rice harvest. The treatments under the NTS led to greater stability in the soil aggregates (ranging from 86.33 to 95.37 %) than fallow plus CTS (ranging from 74.62 to 85.94 %). Fallow plus CTS showed the highest number of aggregates smaller than 2 mm. The cover crops affected soil bulk density differently, and the millet treatment in the NTS had the lowest values. The cover crops without incorporation provided the greatest accumulation of TOC in the soil surface layers. The TOC concentration was positively correlated with the aggregate stability index in all layers and negatively correlated with bulk density in the 0.00-0.10 m layer.
Resumo:
The objective of this experiment was to study the effects of soil management systems on the bulk density, chemical soil properties, and on the soil microbial activity on a Latossolo Vermelho distrófico (Oxisol). Soil samples were collected from plots under the following management conditions: a) natural dense "cerrado" vegetation (savanna); b) degraded Brachiaria decumbens pasture, 20 years old; c) no-tillage treatment with annual crop sequence (bean, corn, soybean and dark-oat in continuous rotation), 8 years old; d) conventional tillage treatment with crop residues added to the soil, and annual crop sequence, 10 years old. The continuous use of no-tillage system resulted in an increase in microbial biomass and decrease in soil basal respiration, therefore displaying evident long-term effects on the increase of soil C content. The no-tillage system also provided an improvement in bulk density and chemical properties of the soil. Hence, the no-tillage management system could be an alternative for the conservation and maintenance of physical and chemical conditions and the productive potential of "cerrado" soils.
Resumo:
A metallic-sample arc-furnace was modified to synthesize fullerenes and nanotubes. The (reversible) changes and the process for producing single-wall nanotubes (SWNTs) are described.
Resumo:
In this work carrier-facilitated transport of mercury(II) against its concentration gradient from aqueous 0.04 M hydrochloric acid solution across a liquid membrane containing isopropyl 2-[(isopropoxycarbothiolyl)disulfanyl]ethane thioate (IIDE) as the mobile carrier in chloroform has been investigated. Sodium thiocyanate solution (1.6 M) was the most efficient receiving phase agent among several aqueous reagents tested. Various parameters such as investigated. Under optimum conditions the transport of Hg(II) across the liquid membrane is more than 97% after 2.5 h. The carrier, IIDE, selectively and efficiently could able to transport Hg (II) ions in the presence of other associated metal ions in binary systems.
Resumo:
An isocratic reversed phase high-performance liquid chromatographic (RP-HPLC) method has been developed for the simultaneous determination of gemifloxacin and diuretics (hydrochlorothiazide and furosemide) in bulk, dosage formulations and human serum at 232 nm. Chromatographic separation was achieved on Purospher Start C18 (250 mm x 4.6 mm, 5 µm) column using mobile phase, methanol: water: acetonitrile (70:25:5 v/v/v) adjusted to pH 3.0 via phosphoric acid 85% having flow rate of 0.8 mL min -1 at room temperature. Calibration curves were linear over range of 0.5-10 µg mL -1 with a correlation coefficient ± 0.999. LOD and LOQ were in the ranges of 0.75-2.56 µg mL -1. Intra and inter-run precision and accuracy results were 98.26 to 100.9.
Resumo:
Sensitive and selective spectrophotometric and spectrofluorimetric methods have been developed for determination of some drugs such as Pramipexole, Nebivolol, Carvedilol, and Eletriptan, which commonly contain secondary amino group. The subject methods were developed via derivatization of the secondary amino groups with 7-Chloro-4-Nitrobenzofurazon in borate buffer where a yellow colored reaction product was obtained and measured spectrophotometrically or spectrofluorimetrically. Concentration ranges were found as 2.0 to 250 μg mL-1 and 0.1 to 3.0 μg mL-1, for spectrophotometric and spectrofluorimetric study, respectively. The described methods can be easily applied by the quality control laboratories in routine analyses of these drugs in pharmaceutical preparations.
Resumo:
Three simple, sensitive, economical and reproducible spectrophotometric methods (A, B and C) are described for determination of mesalamine in pure drug as well as in tablet dosage forms. Method A is based on the reduction of tungstate and/or molybdate in Folin Ciocalteu's reagent; method B describes the reaction between the diazotized drug and α-naphthol and method C is based on the reaction of the drug with vanillin, in acidic medium. Under optimum conditions, mesalamine could be quantified in the concentration ranges, 1-30, 1-15 and 2-30 µg mL-1 by method A, B and C, respectively. All the methods have been applied to the determination of mesalamine in tablet dosage forms. Results of analysis are validated statistically.
Resumo:
Resulting from ion displacement in a solid under pressure, piezoelectricity is an electrical polarization that can be observed in perovskite-type electronic ceramics, such as PbTiO3, which present cubic and tetragonal symmetries at different pressures. The transition between these crystalline phases is determined theoretically through the bulk modulus from the relationship between material energy and volume. However, the change in the material molecular structure is responsible for the piezoelectric effect. In this study, density functional theory calculations using the Becke 3-Parameter-Lee-Yang-Parr hybrid functional were employed to investigate the structure and properties associated with the transition state of the tetragonal-cubic phase change in PbTiO3 material.
Resumo:
Two simple, rapid and cost-effective methods based on titrimetric and spectrophotometric techniques are described for the assay of RNH in bulk drug and in dosage forms using silver nitrate, mercury(II)thiocyanate and iron(III)nitrate as reagents. In titrimetry, an aqueous solution of RNH is treated with measured excess of silver nitrate in HNO3 medium, followed by determination of unreacted silver nitrate by Volhard method using iron(III) alum indicator. Spectrophotometric method involve the addition a known excess of mercury(II)thiocyanate and iron(III)nitrate to RNH, followed by the measurement of the absorbance of iron(III)thiocyante complex at 470 nm. Titrimetric method is applicable over 4-30 mg range and the reaction stoichiometry is found to be 1:1 (RNH: AgNO3). In the spectrophotometric method, the absorbance is found to increase linearly with concentration of RNH which is corroborated by the correlation coefficient of 0.9959. The system obey Beer's law for 5-70 µg mL-1. The calculated apparent molar absorptivity and sandell sensitivity values are found to be 3.27 ´ 10³ L mol-1 cm-1, 0.107 µg cm-2 respectively. The limits of detection and quantification are also reported for the spectrophotometric method. Intra-day and inter-day precision and accuracy of the methods were evaluated as per ICH guidelines. The methods were successfully applied to the assay of RNH in formulations and the results were compared with those of a reference method by applying Student's t and F-tests. No interference was observed from common pharmaceutical excipients. The accuracy of the methods was further ascertained by performing recovery tests by standard addition method.
Resumo:
A direct, extraction-free spectrophotometric method has been developed for the determination of acebutolol hydrochloride (ABH) in pharmaceutical preparations. The method is based on ion-pair complex formation between the drug and two acidic dyes (sulphonaphthalein) namely bromocresol green (BCG) and bromothymol blue (BTB). Conformity to Beer's law enabled the assay of the drug in the range of 0.5-13.8 µg mL-1 with BCG and 1.8-15.9 µg mL-1 with BTB. Compared with a reference method, the results obtained were of equal accuracy and precision. In addition, these methods were also found to be specific for the analysis of acebutolol hydrochloride in the presence of excipients, which are co-formulated in the drug.
Resumo:
Two new, simple, rapid and reproducible spectrophotometric methods have been developed for the determination of lamotrigine (LMT) both in pure form and in its tablets. The first method (method A) is based on the formation of a colored ion-pair complex (1:1 drug/dye) of LMT with bromocresol green (BCG) at pH 5.02±0.01 and extraction of the complex into dichloromethane followed by the measurement of the yellow ion-pair complex at 410 nm. In the second (method B), the drug-dye ion-pair complex was dissolved in ethanolic potassium hydroxide and the resulting base form of the dye was measured at 620 nm. Beer's law was obeyed in the concentration range of 1.5-15 µg mL-1 and 0.5-5.0 µg mL-1 for method A and method B, respectively, and the corresponding molar absorptivity values are 1.6932 x 10(4) and 3.748 x 10(4) L mol-1cm-1. The Sandell sensitivity values are 0.0151 and 0.0068 µg cm-2 for method A and method B, respectively. The stoichiometry of the ion-pair complex formed between the dug and dye (1:1) was determined by Job's continuous variations method and the stability constant of the complex was also calculated. The proposed methods were applied successfully for the determination of drug in commercial tablets.