36 resultados para FINE PARTICULATE MATTER SOURCES
em Scielo Saúde Pública - SP
Resumo:
OBJECTIVE: To analyze the impact on human health of exposure to particulate matter emitted from burnings in the Brazilian Amazon region. METHODS: This was an ecological study using an environmental exposure indicator presented as the percentage of annual hours (AH%) of PM2.5 above 80 μg/m3. The outcome variables were the rates of hospitalization due to respiratory disease among children, the elderly and the intermediate age group, and due to childbirth. Data were obtained from the National Space Research Institute and the Ministry of Health for all of the microregions of the Brazilian Amazon region, for the years 2004 and 2005. Multiple regression models for the outcome variables in relation to the predictive variable AH% of PM2.5 above 80 μg/m3 were analyzed. The Human Development Index (HDI) and mean number of complete blood counts per 100 inhabitants in the Brazilian Amazon region were the control variables in the regression analyses. RESULTS: The association of the exposure indicator (AH%) was higher for the elderly than for other age groups (β = 0.10). For each 1% increase in the exposure indicator there was an increase of 8% in child hospitalization, 10% in hospitalization of the elderly, and 5% for the intermediate age group, even after controlling for HDI and mean number of complete blood counts. No association was found between the AH% and hospitalization due to childbirth. CONCLUSIONS: The indicator of atmospheric pollution showed an association with occurrences of respiratory diseases in the Brazilian Amazon region, especially in the more vulnerable age groups. This indicator may be used to assess the effects of forest burning on human health.
Resumo:
In this study, the concentration and morphological characteristics of inhalable particulate material (PM10) were evaluated and associated with climatic conditions. The mean annual concentration was 11.0 µg m−3, varying between 0,647 µg m−3 and 36.8 µg m−3. Wind speed has a higher influence on PM10 dispersion, but direction was associated with particle source. During the wet period, wind speed is the main dispersion factor, while speed and direction both are important during the dry period. Based on the morphological characteristics, it is concluded that biogenic particles prevail during the rainy season and terrigenous particles during the dry period, depending on the wind direction and intensity.
Resumo:
Atmospheric pollutants can have serious impacts on the preservation of São Paulo's tangible cultural heritage. The purpose of this paper is to report the results of a monitoring campaign focussed on particulate matter (PM) that was conducted in three of the most important museums of the São Paulo megacity (Brazil): the Museu de Arqueologia e Etnologia (MAE-USP), the Museu Paulista (MP-USP), and the Pinacoteca do Estado de São Paulo (PE). These museums exhibit indoor PM and black carbon (BC) concentrations consistent with their urban locations and their specific methods for managing the indoor environment.
Resumo:
ABSTRACT OBJECTIVE To analyze the impact of air pollution on respiratory and cardiovascular morbidity of children and adults in the city of Vitoria, state of Espirito Santo. METHODS A study was carried out using time-series models via Poisson regression from hospitalization and pollutant data in Vitoria, ES, Southeastern Brazil, from 2001 to 2006. Fine particulate matter (PM10), sulfur dioxide (SO2), and ozone (O3) were tested as independent variables in simple and cumulative lags of up to five days. Temperature, humidity and variables indicating weekdays and city holidays were added as control variables in the models. RESULTS For each increment of 10 µg/m3 of the pollutants PM10, SO2, and O3, the percentage of relative risk (%RR) for hospitalizations due to total respiratory diseases increased 9.67 (95%CI 11.84-7.54), 6.98 (95%CI 9.98-4.17) and 1.93 (95%CI 2.95-0.93), respectively. We found %RR = 6.60 (95%CI 9.53-3.75), %RR = 5.19 (95%CI 9.01-1.5), and %RR = 3.68 (95%CI 5.07-2.31) for respiratory diseases in children under the age of five years for PM10, SO2, and O3, respectively. Cardiovascular diseases showed a significant relationship with O3, with %RR = 2.11 (95%CI 3.18-1.06). CONCLUSIONS Respiratory diseases presented a stronger and more consistent relationship with the pollutants researched in Vitoria. A better dose-response relationship was observed when using cumulative lags in polynomial distributed lag models.
Resumo:
Samplings of atmospheric particulate matter (PM) were carried out between the months of March and April of 2007, simultaneously in two areas of Londrina, an urban (Historical Museum) and other rural (Farm School-UEL). PM was collected using the cascade impactor consisting of four impaction stages (0.25 to 10 μm). The results indicated that the fine fraction (PM2.5) represented a significant portion of the mass of PM10 (70 and 67% in the urban and rural places, respectively). Cl-, NO3- and SO4(2-) were determined by ion chromatography and the size distribution is presented. Natural and anthropogenic sources were suggested to the ionic components in the fine and coarse mode of PM.
Resumo:
Trace element concentrations were measured in atmospheric particulate matter collected in 2009 and 2010, in a Brazilian region influenced by pre-harvest burning of sugar cane crops. For coarse particles, high concentrations of Al, Fe, K and Ca suggested that re-suspended soil dust was the main source of aerosol trace elements, subsequently confirmed by XRD analysis. High levels of K, Zn, As, Cd and Pb were found in fine particles, confirming the contribution of biomass burning and vehicle emissions, whereas Na, Al, K, Fe and Zn were the representative elements in ultrafine particles, influenced by a diversity of sources.
Resumo:
The Ilha Grande National Park, Paraná, Brazil, is located in the Upper Paraná River and has characteristics typical of a floodplains. This protected area includes lagoons connected and disconnected to the Paraná River, although the latter also connect during periods of high water level, thus composing a heterogeneous group of lacustrine environments. The enormous potential the flora and fauna diversities are still little known to the region, as can be seen through benthic invertebrates, inclunding bivalves mollusks. The granulometric composition of these floodplain lagoons was formed mainly by mud and very fine sand. Furthermore, organic matter composition was predominantly of fine particulate. The other abiotic factors differed from lagoons located within the island of the park to those located in the left margin of Paraná River. The results demonstrated the importance of abiotic factors such as the physical composition of granulometric texture, organic matter and macrophyte banks, to the establishment of bivalves in these floodplain lagoons. We recorded bivalves of Pisidium (native), Diplodon (native), and Corbicula (invasive). The highest values of Diplodon sp. density were observed at São João/C lake, for Pisidium sterkianum (Pilsbry, 1897) at São João/M lake, and to Jatobá/C lagoon with high density of invasive species Corbicula fluminea (Müller, 1774). This study to obtain conduct the first records of freshwater bivalves in floodplains lagoon in the Ilha Grande National Park, and provides contributions to better understanding the ecology of these mollusks. The recording of native species in the region of Upper Paraná River floodplain after a lomg period without new records, demonstrated the importance of protecting the lagoons of the Ilha Grande National Park as they can be a possible refuge to some species of native freshwater bivalves.
Resumo:
It was identified and quantified several organic compounds in the atmosphere of a site into Amazon Basin with high impact of biomass burning emission. It was important to know the particulate matter composition with respect to n-alkanes and PAH associated with the particulate matter because they provided indication on the main sources contributing to airborne particles, the contribution of natural vs. man-made emission and the aging of the particles. The main classes of compounds observed were n-alkanes, PAH and nitro-PAH. It was observed the formation of nitro-PAH from photochemical reactions. The aerosol mass concentration is mainly associated with fluoranthene, pyrene and benzo(ghi)perylene. Environmental and direct emissions samples (flaming and smoldering) were collected and analysed.
Resumo:
This work starts with a historical perspective of the social and scientific progress related to the understanding of the atmospheric aerosol. Its origin, physical, chemical and optical characteristics, as well as its environmental behaviour are described, retracing the evolution of the concepts related to this subject over the last centuries. The main sources that contribute to atmospheric particulate matter and the modern understanding of its formation processes and constitution, focusing on the chemical pathways leading to it and on its organic components are presented. This discussion is complemented with recent evaluations of the quantities emitted by primary, secondary, biogenic and anthropogenic sources and the effects due to accumulation or dispersion of aerosols, justifying the chemical and environmental interest they engender.
Resumo:
The main objective of this study was the identification of sources generating particulate matter in the atmospheric aerosols of Sete Lagoas, Minas Gerais. The measurement of the mineral composition was accomplished by X-ray diffractometry and the elemental concentration by neutron activation analysis. The results showed that Al, Cl, Cu, Fe, K, Mg and Na are the predominant chemical elements in the total suspended particles (TPS). The presence of Na, Ba, Cl, Cu, Eu, Fe and Sm in those particles with aerodynamic diameter smaller than 10 µm (PM10), indicates that soil dust and ceramic and pig iron industries are the main sources of air quality degradation in the region.
Resumo:
Aerosol size distributions from 6 to 700 nm were measured simultaneously at an urban background site and a roadside station in Oporto. The particle number concentration was higher at the traffic exposed site, where up to 90% of the size spectrum was dominated by the nucleation mode. Larger aerosol mode diameters were observed in the urban background site possibly due to the coagulation processes or uptake of gases during transport. Factor analysis has shown that road traffic and the neighbour stationary sources localised upwind affect the urban area thought intra-regional pollutant transport.
Resumo:
The pollutant transference among reservoirs atmosphere-hydrosphere, relevant to the atmospheric chemistry, depends upon scavenging coefficient (Λ) calculus, which depends on the raindrop size distribution as well as on the rainfall systems, both different to each locality. In this work, the Λ calculus will be evaluated to gas SO2 and particulate matter fine and coarse among five sites in Germany and two in Brazil. The results show three possible classifications in function of Λ, comparable to literature, however with a greater range due to the differences of rainfall system sites. This preliminary study supports future researches
Resumo:
Air samples of fine (PM2,5) and coarse (PM2,5-10) particulate matter were collected in São José dos Campos from February 2004 to February 2005. Average PM10 mass concentrations was 31.2 ± 14.0 μg m-3, half of which belonging to the PM2.5 fraction. Ammonium and SO4(2-) were predominantly found in the fine fraction. Average (NH4)2SO4 concentration was estimated to be about 2.9 μg m-3. Chloride, Na+ and NO3- were mostly associated with PM2,5-10. Chloride deficits with respect to sea-salt Cl/Na ratio were found in both size fractions.
Resumo:
Coal, natural gas and petroleum-based liquid fuels are still the most widely used energy sources in modern society. The current scenario contrasts with the foreseen shortage of petroleum that was spread out in the beginning of the XXI century, when the concept of "energy security" emerged as an urgent agenda to ensure a good balance between energy supply and demand. Much beyond protecting refineries and oil ducts from terrorist attacks, these issues soon developed to a portfolio of measures related to process sustainability, involving at least three fundamental dimensions: (a) the need for technological breakthroughs to improve energy production worldwide; (b) the improvement of energy efficiency in all sectors of modern society; and (c) the increase of the social perception that education is a key-word towards a better use of our energy resources. Together with these technological, economic or social issues, "energy security" is also strongly influenced by environmental issues involving greenhouse gas emissions, loss of biodiversity in environmentally sensitive areas, pollution and poor solid waste management. For these and other reasons, the implementation of more sustainable practices in our currently available industrial facilities and the search for alternative energy sources that could partly replace the fossil fuels became a major priority throughout the world. Regarding fossil fuels, the main technological bottlenecks are related to the exploitation of less accessible petroleum resources such as those in the pre-salt layer, ranging from the proper characterization of these deep-water oil reservoirs, the development of lighter and more efficient equipment for both exploration and exploitation, the optimization of the drilling techniques, the achievement of further improvements in production yields and the establishment of specialized training programs for the technical staff. The production of natural gas from shale is also emerging in several countries but its production in large scale has several problems ranging from the unavoidable environmental impact of shale mining as well as to the bad consequences of its large scale exploitation in the past. The large scale use of coal has similar environmental problems, which are aggravated by difficulties in its proper characterization. Also, the mitigation of harmful gases and particulate matter that are released as a result of combustion is still depending on the development of new gas cleaning technologies including more efficient catalysts to improve its emission profile. On the other hand, biofuels are still struggling to fulfill their role in reducing our high dependence on fossil fuels. Fatty acid alkyl esters (biodiesel) from vegetable oils and ethanol from cane sucrose and corn starch are mature technologies whose market share is partially limited by the availability of their raw materials. For this reason, there has been a great effort to develop "second-generation" technologies to produce methanol, ethanol, butanol, biodiesel, biogas (methane), bio-oils, syngas and synthetic fuels from lower grade renewable feedstocks such as lignocellulosic materials whose consumption would not interfere with the rather sensitive issues of food security. Advanced fermentation processes are envisaged as "third generation" technologies and these are primarily linked to the use of algae feedstocks as well as other organisms that could produce biofuels or simply provide microbial biomass for the processes listed above. Due to the complexity and cost of their production chain, "third generation" technologies usually aim at high value added biofuels such as biojet fuel, biohydrogen and hydrocarbons with a fuel performance similar to diesel or gasoline, situations in which the use of genetically modified organisms is usually required. In general, the main challenges in this field could be summarized as follows: (a) the need for prospecting alternative sources of biomass that are not linked to the food chain; (b) the intensive use of green chemistry principles in our current industrial activities; (c) the development of mature technologies for the production of second and third generation biofuels; (d) the development of safe bioprocesses that are based on environmentally benign microorganisms; (e) the scale-up of potential technologies to a suitable demonstration scale; and (f) the full understanding of the technological and environmental implications of the food vs. fuel debate. On the basis of these, the main objective of this article is to stimulate the discussion and help the decision making regarding "energy security" issues and their challenges for modern society, in such a way to encourage the participation of the Brazilian Chemistry community in the design of a road map for a safer, sustainable and prosper future for our nation.
Resumo:
This study aims to evaluate the prognostic value of microscopic parameters of asymptomatic leaves of Clusia hilariana Schltdl. subjected to particulate deposition of iron (2.14 mg cm-2 day-1) for 45 consecutive days. Samples of young and expanded leaves without symptoms were collected and subjected to light and scanning electron microscopy techniques. The height of the epidermal cells on both surfaces of the leaf and the thickness of the hypodermis, the chlorophyll parenchyma, and the leaf blade were measured. Micromorphological injury occurred in the abaxial surface of young leaves and on both surfaces of expanded leaves. Erosion of the epicuticular wax and cuticle rupture were frequent on the adaxial surface, while on the abaxial surface of both leaves there was a loss of sinuosity on the anticlinal wall of the epidermal cells, stomatal deformity and obstruction. Micromorphometric alterations were seen in all leaf tissues except in the height of epidermic cells, probably due to the thick cuticle and prominent cuticular flanges. The highest difference in thickness of the leaf blade was seen in young leaves of plants subjected to SPMFe, indicating greater sensibility to particulate iron in comparison to the expanded leaves. The micromorphological and micromorphometric alterations in the leaf blade of Clusia hilariana Schltdl. showed the prognostic potential of these tools on the evaluation of impacts caused by the deposition of particulate matter, especially in the 'Restinga' natural vegetation, where the exposure is increasing due to the presence of iron ore industry in their surroundings.