5 resultados para Equivalent-circuit model
em Scielo Saúde Pública - SP
Resumo:
This paper discusses different aspects related to the application of electrochemical impedance spectroscopy (EIS) in the study of heterogeneous electrochemical reactions occurring on Dimensionally Stable anodes (DSA®). The most relevant aspects of the semiconductor/electrolyte interface, the application of the EIS classical equivalent circuit approach and the ac porous model in DSA are presented. The paper shows that DSA type electrodes can be consistently investigated by using the ac porous model and an analysis is presented showing the advantage of applying this kind of approach to study heterogeneous reactions on DSA electrodes. Furthermore, some preliminary results on Ti/Ru0,3Ti(0,7-x)Sn x O2 based electrodes are presented to exemplify the use of the ac porous model analysis.
Resumo:
Some aspects of the application of electrochemical impedance spectroscopy to studies of solid electrode / solution interface, in the absence of faradaic processes, are analysed. In order to perform this analysis, gold electrodes with (111) and (210) crystallographic orientations in an aqueous solution containing 10 mmol dm-3 KF, as supporting electrolyte, and a pyridine concentration varying from 0.01 to 4.6 mmol dm-3, were used. The experimental data was analysed by using EQUIVCRT software, which utilises non-linear least squares routines, attributing to the solid electrode / solution interface behaviour described by an equivalent circuit with a resistance in series with a constant phase element. The results of this fitting procedure were analysed by the dependence on the electrode potential on two parameters: the pre-exponential factor, Y0, and the exponent n f, related with the phase angle shift. By this analysis it was possible to observe that the pyridine adsorption is strongly affected by the crystallographic orientation of the electrode surface and that the extent of deviation from ideal capacitive behaviour is mainly of interfacial origin.
Resumo:
The high level of protection elicited in rodents and primates by the radiation-attenuated schistosome vaccine gives hope that a human vaccine relying on equivalent mechanisms is feasible. In humans, a vaccine would be undoubtedly administered to previously or currently infected individuals. We have therefore used the olive baboon to investigate whether vaccine-induced immunity is compromised by a schistosome infection. We showed that neither a preceding infection, terminated by chemotherapy, nor an ongoing chronic infection affected the level of protection. Whilst IgM responses to vaccination or infection were short-lived, IgG responses rose with each successive exposure to the vaccine. Such a rise was obscured by responses to egg deposition in already-infected animals. In human trials it would be necessary to use indirect estimates of infection intensity to determine vaccine efficacy. Using worm burden as the definitive criterion, we demonstrated that the surrogate measures, fecal eggs, and circulating antigens, consistently overestimated protection. Regression analysis of the surrogate parameters on worm burden revealed that the principal reason for overestimation was the threshold sensitivity of the assays. If we extrapolate our findings to human schistosomiasis mansoni, it is clear that more sensitive indirect measures of infection intensity are required for future vaccine trials.
Resumo:
The objective of the present study was to determine whether sleep deprivation (SD) would promote changes in lymphocyte numbers in a type 1 diabetes model (non-obese diabetic, NOD, mouse strain) and to determine whether SD would affect female and male NOD compared to Swiss mice. The number of lymphocytes in peripheral blood after 24 and 96 h of SD (by multiple platform method) or equivalent period of time in home-cage controls was examined prior to the onset of diabetes. SD for 96 h significantly reduced lymphocytes in male Swiss mice compared to control (8.6 ± 2.1 vs 4.1 ± 0.7 10³/µL; P < 0.02). In male NOD animals, 24- and 96-h SD caused a significant decrease of lymphocytes compared to control (4.4 ± 0.3 vs 1.6 ± 0.5; P < 0.001 and 4.4 ± 0.3 vs 0.9 ± 0.1 10³/µL; P < 0.00001, respectively). Both 24- and 96-h SD induced a reduction in the number of lymphocytes in female Swiss (7.5 ± 0.5 vs 4.5 ± 0.5, 4.4 ± 0.6 10³/µL; P < 0.001, respectively) and NOD mice (4 ± 0.6 vs 1.8 ± 0.2, 1.2 ± 0.4 10³/µL; P < 0.01, respectively) compared to the respective controls. Loss of sleep induced lymphopenia in peripheral blood in both genders and strains used. Since many cases of autoimmunity present reduced numbers of lymphocytes and, in this study, it was more evident in the NOD strain, our results suggest that SD should be considered a risk factor in the onset of autoimmune disorders.
Resumo:
Circadian timing is structured in such a way as to receive information from the external and internal environments, and its function is the timing organization of the physiological and behavioral processes in a circadian pattern. In mammals, the circadian timing system consists of a group of structures, which includes the suprachiasmatic nucleus (SCN), the intergeniculate leaflet and the pineal gland. Neuron groups working as a biological pacemaker are found in the SCN, forming a biological master clock. We present here a simple model for the circadian timing system of mammals, which is able to reproduce two fundamental characteristics of biological rhythms: the endogenous generation of pulses and synchronization with the light-dark cycle. In this model, the biological pacemaker of the SCN was modeled as a set of 1000 homogeneously distributed coupled oscillators with long-range coupling forming a spherical lattice. The characteristics of the oscillator set were defined taking into account the Kuramoto's oscillator dynamics, but we used a new method for estimating the equilibrium order parameter. Simultaneous activities of the excitatory and inhibitory synapses on the elements of the circadian timing circuit at each instant were modeled by specific equations for synaptic events. All simulation programs were written in Fortran 77, compiled and run on PC DOS computers. Our model exhibited responses in agreement with physiological patterns. The values of output frequency of the oscillator system (maximal value of 3.9 Hz) were of the order of magnitude of the firing frequencies recorded in suprachiasmatic neurons of rodents in vivo and in vitro (from 1.8 to 5.4 Hz).