50 resultados para Enzyme inactivation by oxidation
em Scielo Saúde Pública - SP
Resumo:
Hydrogen peroxide has been used for decades in developed countries as an oxidizing agent in the treatment of water, domestic sewage and industrial effluents. This study evaluated the influence of the concentration of H2O2 and pH on the inactivation of Escherichia coli cells and the disinfection of sewage treated. The results showed that the inactivation rate increased with pH and H2O2. The presence of other contaminants dissolved in the effluent is probably the cause of these differences, because E. coli inactivation in synthetic wastewater was found to be much faster than in the real treated domestic sewage.
Resumo:
Bradykinin has been reported to act as a growth factor for fibroblasts, mesangial cells and keratinocytes. Recently, we reported that bradykinin augments liver regeneration after partial hepatectomy in rats. Angiotensin-converting enzyme (ACE) is also a powerful bradykinin-degrading enzyme. We have investigated the effect of ACE inhibition by lisinopril on liver regeneration after partial hepatectomy. Adult male Wistar rats underwent 70% partial hepatectomy (PH). The animals received lisinopril at a dose of 1 mg kg body weight-1 day-1, or saline solution, intraperitoneally, for 5 days before hepatectomy, and daily after surgery. Four to six animals from the lisinopril and saline groups were sacrificed at 12, 24, 36, 48, 72, and 120 h after PH. Liver regeneration was evaluated by immunohistochemical staining for proliferating cell nuclear antigen using the PC-10 monoclonal antibody. The value for the lisinopril-treated group was three-fold above the corresponding control at 12 h after PH (P<0.001), remaining elevated at approximately two-fold above control values at 24, 36, 48 (P<0.001), and at 72 h (P<0.01) after PH, but values did not reach statistical difference at 120 h after PH. Plasma ACE activity measured by radioenzymatic assay was significantly higher in the saline group than in the lisinopril-treated group (P<0.001), with 81% ACE inhibition. The present study shows that plasma ACE inhibition enhances liver regeneration after PH in rats. Since it was reported that bradykinin also augments liver regeneration after PH, this may explain the liver growth stimulating effect of ACE inhibitors.
Resumo:
We characterized the role of potential cAMP-responsive elements (CRE) in basal and in induced angiotensin converting enzyme (ACE) gene promoter activity in order to shed light on the regulation of somatic ACE expression. We identified stimulators and repressors of basal expression between 122 and 288 bp and between 415 and 1303 bp upstream from the transcription start site, respectively, using a rabbit endothelial cell (REC) line. These regions also contained elements associated with the response to 8BrcAMP. When screening for CRE motifs we found pCRE, a proximal sequence between 209 and 222 bp. dCRE, a distal tandem of two CRE-like sequences conserved between rats, mice and humans, was detected between 834 and 846 bp. Gel retardation analysis of nuclear extracts of REC indicated that pCRE and dCRE bind to the same protein complexes as bound by a canonical CRE. Mutation of pCRE and dCRE in REC established the former as a positive element and the latter as a negative element. In 293 cells, a renal cell line, pCRE and dCRE are negative regulators. Co-transfection of ATF-2 or ATF-2 plus c-Jun repressed ACE promoter activity, suggesting that the ACE gene is controlled by cellular stress. Although mapping of cAMP responsiveness was consistent with roles for pCRE and dCRE, mutation analysis indicated that they were not required for cAMP responsiveness. We conclude that the basal activity of the somatic ACE promoter is controlled by proximal and distal CREs that can act as enhancers or repressors depending on the cell context.
Resumo:
The induction of nicotinamide adenine dinucleotide phosphate-malic enzyme (NADP-ME) in etiolated maize (Zea mays) seedlings by UV-B and UV-A radiation, and different levels of photosynthetically active radiation (PAR, 400-700 nm) was investigated by measuring changes in activity, protein quantity and RNA levels as a function of intensity and duration of exposure to the different radiations. Under low levels of PAR, exposure to UV-B radiation but not UV-A radiation for 6 to 24 h caused a marked increase in the enzyme levels similar to that observed under high PAR in the absence of UV-B. UV-B treatment of green leaves following a 12-h dark period also caused an increase in NADP-ME expression. Exposure to UV-B radiation for only 5 min resulted in a rapid increase of the enzyme, followed by a more gradual rise with longer exposure up to 6 h. Low levels of red light for 5 min or 6 h were also effective in inducing NADP-ME activity equivalent to that obtained with UV-B radiation. A 5-min exposure to far-red light following UV-B or red light treatment reversed the induction of NADP-ME, and this effect could be eliminated by further treatment with UV-B or red light. These results indicate that physiological levels of UV-B radiation can have a positive effect on the induction of this photosynthetic enzyme. The reducing power and pyruvate generated by the activity of NADP-ME may be used for respiration, in cellular repair processes and as substrates for fatty acid synthesis required for membrane repair.
Resumo:
Normal in vitro thyroid peroxidase (TPO) iodide oxidation activity was completely inhibited by a hydrolyzed TPO preparation (0.15 mg/ml) or hydrolyzed bovine serum albumin (BSA, 0.2 mg/ml). A pancreatic hydrolysate of casein (trypticase peptone, 0.1 mg/ml) and some amino acids (cysteine, tryptophan and methionine, 50 µM each) also inhibited the TPO iodide oxidation reaction completely, whereas casamino acids (0.1 mg/ml), and tyrosine, phenylalanine and histidine (50 µM each) inhibited the TPO reaction by 54% or less. A pancreatic digest of gelatin (0.1 mg/ml) or any other amino acid (50 µM) tested did not significantly decrease TPO activity. The amino acids that impair iodide oxidation also inhibit the TPO albumin iodination activity. The inhibitory amino acids contain side chains with either sulfur atoms (cysteine and methionine) or aromatic rings (tyrosine, tryptophan, histidine and phenylalanine). Among the amino acids tested, only cysteine affected the TPO guaiacol oxidation reaction, producing a transient inhibition at 25 or 50 µM. The iodide oxidation inhibitory activity of cysteine, methionine and tryptophan was reversed by increasing iodide concentrations from 12 to 18 mM, while no such effect was observed when the cofactor (H2O2) concentration was increased. The inhibitory substances might interfere with the enzyme activity by competing with its normal substrates for their binding sites, binding to the free substrates or reducing their oxidized form.
Resumo:
Enterohemolysin produced by Escherichia coli associated with infant diarrhea showed characteristics similar to those of thiol-activated hemolysins produced by Gram-positive bacteria, including inactivation by cholesterol, lytic activity towards eukaryotic cells and thermoinstability. However, enterohemolysin activity was not inactivated by oxidation or by SH group-blocking agents (1 mM HgCl2, 1 mM iodoacetic acid) and the hemolysin (100 µg/ml) was not lethal to mice, in contrast to the lethality of the thiol-activated hemolysin family to animals. Earlier reports showed that intravenous injection of partially purified streptolysin O preparations (0.2 µg) was rapidly lethal to mice. These results suggest that E. coli enterohemolysin is not a thiol-activated hemolysin, despite its ability to bind cholesterol, probably due to the absence of free thiol-group(s) that characterize the active form of the thiol-activated hemolysin molecule.
Resumo:
Acute human parvovirus B19 infection is followed by an antibody response to the structural proteins of the viral capsid (VP1 and VP2). We used 80 sera collected from 58 erythema infectiosum and 6 transient aplastic crisis patients to test IgM and IgG antibodies against these two proteins in an immunofluorescence assay (IFA) using Sf9 cells infected with recombinant baculovirus expressing either VP1 or VP2 antigen. Although less sensitive than IgM capture enzyme immunoassay using native antigen (MACEIA), we could detect anti-VP1 or anti-VP2 IgM antibodies by IFA in 49 patients with acute infection (76.6%). Detection of IgG anti-VP1 and anti-VP2 by IFA, however, was as sensitive as IgG detection by indirect enzyme immunoassay. By applying IgG avidity IFA to sera of the 15 IgM IFA negative patients we were able to confirm acute infection in further 12 cases by IFA. Overall, acute infection was confirmed by IFA in 61 (95.3%) of the 64 patients.
Resumo:
The aim of the present study was to investigate the effects of converting enzyme inhibition by captopril on ECG parameters in aged rats. Four-month-old male rats received captopril dissolved in tap water (0.5 mg/l) or tap water for 2 or 20 months. At the end of treatment, under anesthesia, RR and PR interval, P wave and QRS duration, QT and corrected QT interval were measured in all animals. On the following day, chronic ECG (lead II) recordings were performed to quantify supraventricular (SVPB) or ventricular premature beats (VPB). After sacrifice, the hearts were removed and weighed. RR interval was similar in young and untreated aged rats, but significantly larger in aged rats treated with captopril. P wave and QRS length did not differ among groups. PR interval was significantly larger in old than in young rats and was not affected by captopril. Corrected QT interval was larger in aged than in young rats (117 ± 4 vs 64 ± 6 ms, P<0.05) and was reduced by captopril (71 ± 6 ms, P<0.05). VPB were absent in young rats and highly frequent in untreated old animals (8.4 ± 3.0/30 min). Captopril significantly reduced VPB in old rats (0.3 ± 0.1/30 min, P<0.05). The cardiac hypertrophy found in untreated aged rats was prevented by captopril (3.44 ± 0.14 vs 3.07 ± 0.10 mg/g, P<0.05). The beneficial effects of angiotensin converting enzyme inhibition on the rat heart during the aging process are remarkable.
Resumo:
Endothelial nitric oxide synthase (eNOS) is the primary physiological source of nitric oxide (NO) that regulates cardiovascular homeostasis. Historically eNOS has been thought to be a constitutively expressed enzyme regulated by calcium and calmodulin. However, in the last five years it is clear that eNOS activity and NO release can be regulated by post-translational control mechanisms (fatty acid modification and phosphorylation) and protein-protein interactions (with caveolin-1 and heat shock protein 90) that direct impinge upon the duration and magnitude of NO release. This review will summarize this information and apply the post-translational control mechanisms to disease states.
Resumo:
Determination of seric levels of adenosine deaminase (ADA), an enzyme produced by monocytes/macrophages and lymphocytes, has been used in the diagnosis of human tuberculosis (TB). In the present study, ADA seric activity was evaluated comparatively to the comparative tuberculin test in the diagnosis of bovine tuberculosis. Two hundred fifty-six cattle were classified by origin and by the comparative tuberculin test as TB-positive animals (n = 52, from herds where the Mycobacterium bovis had previously been isolated), and TB-negative animals (n = 204, TB-free herds). The mean ADA seric value from the TB-positive group (4.45 ± 2.33 U/L) was significantly lower (p = 0.008) than that observed in sera from the TB-negative group (6.12 ± 4.47 U/L). When animals from a herd with clinical cases of enzootic bovine leukosis of TB-negative group were withdrawn from analysis, the mean ADA seric values of TB-negative group (5.12 ± 3.75 U/L) was not significantly different anymore from that of the TB-positive group (p = 0.28). There was no agreement in the diagnosis of bovine TB between comparative tuberculin test and determination of ADA seric values, using two different cutoff points, being 6.12 U/L and 15.0 U/L, (kappa = -0.086 and kappa = -0.082, respectively). In conclusion, the determination of ADA seric activity was not a good auxiliary test for bovine TB, because it was not able to distinguish between TB-positive and TB-negative animals.
Resumo:
Immunological diagnostic methods for Trypanosoma cruzi depend specifically on the presence of antibodies and parasitological methods lack sensitivity during the chronic and “indeterminate” stages of the disease. This study performed a serological survey of 1,033 subjects from 52 rural communities in 12 of the 18 municipalities in the state of Querétaro, Mexico. We detected anti-T. cruzi antibodies using the following tests: indirect haemagglutination assay (IHA), indirect immunofluorescence assay (IFA), ELISA and recombinant ELISA (rELISA). We also performed Western blot (WB) analysis using iron superoxide dismutase (FeSOD), a detoxifying enzyme excreted by the parasite, as the antigen. Positive test results were distributed as follows: ELISA 8%, rELISA 6.2%, IFA and IHA 5.4% in both cases and FeSOD 8%. A comparative study of the five tests was undertaken. Sensitivity levels, specificity, positive and negative predictive values, concordance percentage and kappa index were considered. Living with animals, trips to other communities, gender, age, type of housing and symptomatology at the time of the survey were statistically analysed using SPSS software v.11.5. Detection of the FeSOD enzyme that was secreted by the parasite and used as an antigenic fraction in WBs showed a 100% correlation with traditional ELISA tests.
Resumo:
Urea is the most consumed nitrogen fertilizer in the world. However, its agronomic and economic efficiency is reduced by the volatilization of NH3, which can reach 78 % of the applied nitrogen. The coating of urea granules with acidic compounds obtained by charcoal oxidation has the potential to reduce the volatilization, due to the acidic character, the high buffering capacity and CEC. This work aimed to evaluate the effect of HNO3-oxidized carbon on the control of NH3 volatilization. These compounds were obtained by oxidation of Eucalyptus grandis charcoal, produced at charring temperatures of 350 and 450 ºC, with 4.5 mol L-1 HNO3. The charcoal was oxidized by solubilization in acidic or alkaline medium, similar to the procedure of soil organic matter fractionation (CHox350 and CHox450). CHox was characterized by C, H, O, N contents and their respective atomic relations, by the ratio E4 (absorbance 465 nm) by E6 (absorbance 665 nm), and by active acidity and total acidity (CEC). The inhibitory effect of CHox on the urease activity of Canavalia ensiformis was assessed in vitro. The NH3 volatilization from urea was evaluated with and without coating of oxidized charcoal (U-CHox350 or U-CHox450) in a closed system with continuous air flow. The pH of both CHox was near 2.0, but the total acidity of CHox350 was higher, 72 % of which was attributed to carboxylic groups. The variation in the ionization constants of CHox350 was also greater. The low E4/E6 ratios characterize the high stability of the compounds in CHox. CHox did not inhibit the urease activity in vitro, although the maximum volatilization peak from U-CHox450 and U-CHox350 occurred 24 h after that observed for uncoated urea. The lowest volatilization rate was observed for U-CHox350 as well as a 43 % lower total amount of NH3 volatilized than from uncoated urea.
Resumo:
Several compounds related to helminthosporic acid (3) were synthesized via the [3+4] cycloaddition. The reaction of 3-hydroxymethyl-2-methylfuran (12) with 1,1,3,3-tetrabromo-4-methylpentan-2-one (13) resulted in 7-hydroxymethyl-4alpha-isopropyl-1alpha-methyl-8-oxabicyclo[3.2.1]oct-6-en-3-one (8) (37%) and 7-hydroxymethyl-2alpha-isopropyl-1alpha-methyl-8-oxabicyclo[3.2.1]oct-6-en-3-one (14) (12%), which were converted into 7-formyl-4alpha-isopropyl-1alpha-methyl-8-oxabicyclo[3.2.1]oct-6-en-3-one (16) (32% from 8) and 7-formyl-2alpha-isopropyl-1alpha-methyl-8-oxabicyclo[3.2.1]oct-6-en-3-one (18) (40% from 14), respectively. Reduction of (8) resulted in 7-hydroxymethyl-4alpha-isopropyl-1alpha-methyl-8-oxabicyclo[3.2.1]oct-6 -en-3alpha-ol (11) (63% from 8) and 7-hydroxymethyl-4alpha-isopropyl-1alpha-methyl-8-oxabicyclo[3.2.1]oct-6-en-3 beta-ol (15) (30% from 8). The 4alpha-isopropyl-1alpha-methyl-3-oxo-8-oxabicyclo[3.2.1]oct-6-en-7-oic acid (19) was obtained by oxidation of (16) (78%). The results of biological tests are described in details. The best result was observed for compound (15) that caused 76% inhibition on the root growth of D. tortuosum.
Resumo:
Acid drainage results from exposition of sulfides to the atmosphere. Arsenopyrite is a sulfide that releases arsenic (As) to the environment when oxidized. This work evaluated the As mobility in six sulfidic geomaterials from gold mining areas in Minas Gerais State, Brazil. Grained samples (<2 mm) were periodically leached with distilled water, during 70 days. Results suggested As sorption onto (hydr)oxides formed by oxidation of arsenopyrite. Low pH accelerated the acid generation, dissolving Fe oxihydroxides and releasing As. Presence of carbonates decreased oxidation rates and As release. On the other hand, lime added to a partially oxidized sample increased As mobilization.
Resumo:
In recent years, the introduction of the Green Chemistry concepts in undergraduate chemistry classes has been intensively pursued. In this regard, the two-step preparation of Epoxone (an organocatalyst developed by Shi & col.) from commercial D-fructose, through ketalization of vicinal diols followed by oxidation of a sterically congested secondary alcohol, involves important topics in Organic Chemistry and employs inexpensive and nontoxic reagents. The reactions are easy to perform and the products from both steps are readily obtained as crystalline solids after simple procedures, thus facilitating their chemical characterization.