220 resultados para Enzymatic transesterification
em Scielo Saúde Pública - SP
Resumo:
This work investigated the effect of microwave irradiation (MW) on the ethanolysis rate of soybean and sunflower oils catalyzed by supported Novozyme 435 (Candida antarctica). The effects of tert-butanol, water addition and oil:ethanol molar ratio on transesterification were evaluated under conventional heating (CH), and under optimum reaction conditions (with no added water in the system, 10% tert-butanol and 3:1 ethanol-to-oil molar ratio). The reactions were monitored up to 24 h to determine the conditions of initial reaction velocity. The investigated variables under MW (50 W) were: reaction time (5.0-180 min) and mode of reactor operation (fixed power, dynamic and cycles) in the absence and presence of tert-butanol (10% (w/w). The measured response was the reaction conversion in ethyl esters, which was linked to the enzyme catalytic activity. The results indicated that the use of microwave improved the activity at fixed power mode. A positive effect of the association of tert-butanol and MW irradiation on the catalytic activity was observed. The reaction rate improved in the order of approximately 1.5 fold compared to that under CH with soybean oil. Using soybean oil, the enzymatic transesterification under MW for conversion to FAEE (fatty acid ethyl esters) reached >99% in 3h, while with the use of CH the conversions were about 57% under similar conditions.
Resumo:
Several alkyl esters were synthesized, purified, characterized by ¹H NMR and employed as standards for establishing chromatographic methods to monitor their formation in the synthesis of biodiesel. The efficiency of the chromatographic methods was confirmed with the products of enzymatic transesterification of babassu oil with different alcohols (C2 to C4), using Lipozyme as catalyst.
Resumo:
Candida dubliniensis is an opportunistic yeast that has been recovered from several body sites in many populations; it is most often recovered from the oral cavities of human immunodeficiency virus-infected patients. Although extensive studies on epidemiology and phylogeny of C. dubliniensis have been performed, little is known about virulence factors such as exoenzymatic and hemolytic activities. In this study we compared proteinase, hyaluronidase, chondroitin sulphatase and hemolytic activities in 18 C. dubliniensis and 30 C. albicans strains isolated from AIDS patients. C. albicans isolates produced higher amounts of proteinase than C. dubliniensis (p < 0.05). All the tested C. dubliniensis strains expressed hyaluronidase and chondroitin sulphatase activities, but none of them were significantly different from those observed with C. albicans (p > 0.05). Hemolytic activity was affected by CaCl2; when this component was absent, we did not notice any significant difference between C. albicans and C. dubliniensis hemolytic activities. On the contrary, when we added 2.5 g% CaCl2, the hemolytic activity was reduced on C. dubliniensis and stimulated on C. albicans tested strains (p < 0.05).
Resumo:
The aquatic ecosystem is the natural habitat of microorganisms including Vibrio and Aeromonas genus which are pathogenic to human and animals. In the present investigation the frequency of these bacteria and the enzymatic characteristics of 34 Vibrio alginolyticus strains isolated from bivalves harvested in Venice Lagoon (Italy) and Guanabara Bay (Brazil) were carried out from November 2003 to February 2004. The mussels' samples were submitted to enrichment in Alkaline Peptone Water (APW) added with 1% of sodium chloride (NaCl) and APW plus 3% NaCl incubated at 37 ºC for 18-24h. Following the samples were streaked onto TCBS Agar (Thiossulfate Citrate Bile Sucrose Agar) and the suspected colonies were submitted to biochemical characterization. Also, the Vibrio alginolyticus strains were evaluated to collagenase, elastase and chondroitinase production. The results showed the isolation of 127 microorganisms distributed as follows: 105 Vibrio strains such as V. alginolyticus (32.4%), V. harveyi (19%) and V. parahaemolyticus (7.6%), 20 Aeromonas strains and two Plesiomonas shigelloides were the main pathogens isolated. We observed the production of the three enzymes from V. alginolyticus strains considered as the main virulence factors of the bacteria, especially in cases of human dermatological infection.
Resumo:
SUMMARY Sporothrix schenckiiwas reclassified as a complex encompassing six cryptic species, which calls for the reassessment of clinical and epidemiological data of these new species. We evaluated the susceptibility of Sporothrix albicans (n = 1) , S. brasiliensis (n = 6) , S. globosa (n = 1), S. mexicana(n = 1) and S. schenckii(n = 36) to terbinafine (TRB) alone and in combination with itraconazole (ITZ), ketoconazole (KTZ), and voriconazole (VRZ) by a checkerboard microdilution method and determined the enzymatic profile of these species with the API-ZYM kit. Most interactions were additive (27.5%, 32.5% and 5%) or indifferent (70%, 50% and 52.5%) for TRB+KTZ, TRB+ITZ and TRB+VRZ, respectively. Antagonisms were observed in 42.5% of isolates for the TRB+VRZ combination. Based on enzymatic profiling, the Sporothrix schenckii strains were categorized into 14 biotypes. Leucine arylamidase (LA) activity was observed only for S. albicans and S. mexicana. The species S. globosaand S. mexicanawere the only species without β-glucosidase (GS) activity. Our results may contribute to a better understanding of virulence and resistance among species of the genus Sporothrixin further studies.
Resumo:
Evaluation of Cyclosporin A (CyA) blood concentration is imperative in solid organ transplantation in order to achieve maximal immunosuppression with the least side effects. We compared the results of whole blood concentrations of CyA in 50 blood samples simultaneously evaluated by the fluorescent polarization immune assay (TDx) and the enzymatic competitive immune assay (EMIT 2000). There was a strong correlation between both kits for any range of CyA blood concentration (R=0.99, p<0.001). The within-run and between-days coefficient of variation were less than 4% for both assays. The cost for each CyA measurement was 50% lower for the EMIT assay when compared to the TDx assay. We concluded that the EMIT is as accurate as the TDx in measuring CyA blood concentration and has the advantage of a lower cost, as well as the possibility of widespread access to the EMIT methodology in contrast to the TDx equipment, allowing the laboratory to perform several routines within a working day.
Resumo:
Helicobacter pylori is the most common gastric bacteria of human beings. Animal-borne helicobacter have been associated with gastritis, ulceration, and gastric mucosa-associated lymphoid-tissue lymphoma in people. We attempted to identify the species of Helicobacter spp. that infect human beings in north Paraná, Brazil. Samples of gastric mucosa from 38 dyspeptic patients were analyzed by optic microscopy on silver stained slides, polimerase chain reaction (PCR), and enzymatic cleavage. Genus and species-specific primers to H. pylori, H. heilmannii, H. felis, and consensual primers to H. bizzozeronii or H. salomonis were used. The PCR products were submitted to enzymatic cleavage by VspI (Helicobacter spp. product) and HinfI (species products) enzymes. Thirty-two out of 38 patients evaluated had 3.2 to 5 µm long bacteria that resembled H. pylori in Warthin-Starry stained slides and were positive to the genus Helicobacter by PCR. In 30 of these patients the bacteria were identified as H. pylori. Two samples positive by silver stain were negative to all species tested by PCR. None of the 38 samples was positive to animal-origin helicobacter species. These results show that PCR and enzymatic restriction are practical methods to identify the species of helicobacters present in gastric mucosa of human beings. People in north Paraná appear to be infected mostly with H. pylori.
Resumo:
Primary cultures of cardiomyocytes represent a useful model for analyzing cardiac cell biology as well as pathogenesis of several cardiovascular disorders. Our aim was to standardize protocols for determining the damage of cardiac cells cultured in vitro by measuring the creatine kinase and its cardiac isotype and lactate dehydrogenase activities in the supernatants of mice cardiomyocytes submitted to different protocols of cell lysis. Our data showed that due to its higher specificity, the cardiac isotype creatine kinase was the most sensitive as compared to the others studied enzymatic markers, and can be used to monitor and evaluate cardiac damage in in vitro assays.
Resumo:
Microbial activity and biochemical properties are important indicators of the impact of organic composting on soil. The objective of this study was to evaluate some indicators of soil microbial and biochemical processes after application of compost (household waste). A Typic Acrustox, sampled at a depth of 10 cm under Cerrado biome vegetation, was evaluated in three treatments: control (soil without organic compost amendment) and soil with two doses of domestic organic compost (10 and 20 g kg-1 soil). The following properties were evaluated: released C (C-CO2): microbial respiration 15 days after incubation; microbial biomass C (MBC); total glucose (TG); metabolic quotient (qCO2); and enzyme activity of β-glucosidase and acid and alkaline phosphatase. The application of household compost, at doses of 10 and 20 g kg-1 Typic Acrustox, resulted in significant gains in microbial activity, organic C and C stock, as evidenced by increased MBC and TG levels. On the other hand, qCO2 decreases indicated greater microbial diversity and more efficient energy use. The addition of compost, particularly the 20 g kg-1 dose, strongly influenced the enzyme β-glucosidase and phosphatase (acid and alkaline). The β-glucosidase activity was significantly increased and acid phosphatase activity increased more than the alkaline. The ratio of β-glucosidase to MBC was greater in the control than in the composted treatments which suggests that there were more enzymes in the control than in the substrate or that the addition of compost induced a great MBC increase.
Resumo:
There are great concerns about degradation of agricultural soils. It has been suggested that cultivating different plant species intercropped with coffee plants can increase microbial diversity and enhance soil sustainability. The objective of this study was to evaluate enzyme activity (urease, arylsulfatase and phosphatase) and alterations in C and N mineralization rates as related to different legume cover crops planted between rows of coffee plants. Soil samples were collected in a field experiment conducted for 10 years in a sandy soil in the North of Paraná State, Brazil. Samples were collected from the 0-10 cm layer, both from under the tree canopy and in-between rows in the following treatments: control, Leucaena leucocephala, Crotalaria spectabilis, Crotalaria breviflora, Mucuna pruriens, Mucuna deeringiana, Arachis hypogaea and Vigna unguiculata. The soil was sampled in four stages of legume cover crops: pre-planting (September), after planting (November), flowering stage (February) and after plant residue incorporation (April), from 1997 to 1999. The green manure species influenced soil enzyme activity (urease, arylsulfatase and phosphatase) and C and N mineralization rates, both under the tree canopy and in-between rows. Cultivation of Leucaena leucocephala increased acid phosphatase and arilsulfatase activity and C and N mineralization both under the tree canopy and in-between rows. Intercropped L. leucocephala increased urease activity under the tree canopy while C. breviflora increased urease activity in-between rows.
Resumo:
Enzymatic activity is an important property for soil quality evaluation. Two sequences of experiments were carried out in order to evaluate the enzymatic activity in a soil (Rhodic Eutrudox) amended with cattle manure, earthworm casts, or sewage sludges from the municipalities of Barueri and Franca. The activity of commercial enzymes was measured by microcalorimetry in the same soil samples after sterilization. In the first experiment, the enzyme activities of cellulase, protease, and urease were determined in the soil samples during a three month period. In the second sequence of experiments, the thermal effect of the commercial enzymes cellulase, protease, and urease on sterilized soil samples under the same tretaments was monitored for a period of 46 days. The experimental design was randomized and arranged as factorial scheme in five treatments x seven samplings with five replications. The treatment effects were statistically evaluated by one-way analysis of variance. Tukey´s test was used to compare means at p < 0.05. The presence of different sources of organic residues increased the enzymatic activity in the sampling period. Cattle manure induced the highest enzymatic activity, followed by municipal sewage sludge, whereas earthworm casts induced the lowest activity, but differed from control treatment. The thermal effect on the enzyme activity of commercial cellulase, protease, and urease showed a variety of time peaks. These values probably oscillated due to soil physical-chemical factors affecting the enzyme activity on the residues.
Resumo:
The present study aims to compare yield and quality of pequi pulp oil when applying two distinct processes: in the first, pulp drying in a tray dryer at 60ºC was combined with enzymatic treatment and pressing to oil extraction; in the second, a simple process was carried out by combining sun-drying pulp and pressing. In this study, raw pequi fruits were collected in Mato Grosso State, Brazil. The fruits were autoclaved at 121ºC and stored under refrigeration. An enzymatic extract with pectinase and CMCase activities was used for hydrolysis of pequi pulp, prior to oil extraction. The oil extractions were carried out by hydraulic pressing, with or without enzymatic incubation. The oil content in the pequi pulp (45% w/w) and the physicochemical characteristic of the oil was determined according to standard analytical methods. Free fatty acids, peroxide values, iodine and saponification indices were respectively 1.46 mgKOH/g, 2.98 meq/kg, 49.13 and 189.40. The acidity and peroxide values were lower than the obtained values in commercial oil samples, respectively 2.48 mgKOH/g and 5.22 meq/kg. Aqueous extraction has presented lower efficiency and higher oxidation of unsaturated fatty acids. On the other hand, pequi pulp pressing at room temperature has produced better quality oil. However its efficiency is still smaller than the combined enzymatic treatment and pressing process. This combined process promotes cellular wall hydrolysis and pulp viscosity reduction, contributing to at least 20% of oil yield increase by pressing.
Resumo:
Presently glycerol is considered a co-product of biodiesel industry. As the biodiesel production is exponentially increasing, glycerol generated from the transesterification of vegetable oils and fats is also being produced on a large scale, and turned out to be essential seeking for novel alternatives to the consumption of the extra volume, in crude and/or as derivatives high added value. This review mainly deals with chemical and enzymatic transformations of glycerol to obtain chiral building blocks for synthesis of pharmaceuticals and natural products.