46 resultados para Energies
em Scielo Saúde Pública - SP
Resumo:
The problem of convenient access to quantitative Hückel-level descriptions of Möbius and Hückel annulenes for undergraduate lectures about aromaticity is discussed. Frost circle, Zimmerman circle, double circle and Langler semicircular mnemonics are described. The relationship between spectra (complete sets of secular equation roots) for an isoconjugate pair of Hückel and Möbius annulenes and the corresponding acyclic polyene with one less carbon is fully developed. In addition to providing an alternative path to exact spectrum roots, this relationship provides immediate access to almost half of the eigenfunctions for an isoconjugate annulene pair. The remaining eigenfunctions may be obtained very easily.
Resumo:
Resonance energies are shown to be quasithermodynamic in character. Hence, they are generally unsuitable as bases for anticipating kinetic stabilities. Examples are provided, leading to the conclusion that those who intend the word 'aromatic' to mean chemically unreactive, need to carry out full Hückel calculations in order to rank hydrocarbons using the frontier orbital energies.
Resumo:
Angle-resolved electron energy-loss spectra have been measured for the methyl methacrylate (MMA) and styrene molecules in the 0 - 50 eV energy range. The spectra have been obtained at 1 keV incident energy, with an energy resolution of 0.8 eV and covering an angular range of 2.0 to 7.0 degrees. Within our knowledge, this is the first gas-phase excitation spectrum for MMA and styrene in this energy range. The spectra of MMA at small scattering angles are dominated by an intense peak at 6.7 eV followed by a broad band centered at about 16 eV. In the case of styrene, six bands can be observed in the spectra. Based on the angular behaviour of the excitation spectra of these molecules, the low-lying peaks observed are considered to be associated predominantly with dipole-allowed processes. In both cases, new bands can be observed for excitation energies greater than 20 eV. This could be associated with dipole-forbidden transitions to shake-up and doubly-excited states.
Resumo:
This article introduces a simplified model for the theoretical study of the physical adsorption process of gaseous He on the planes (100) and (111) of the solid Xe matrix, whose crystalline structure is face centered cubic (fcc). The Ab initio calculations were carried out at the MP2 level of theory employing basis sets obtained through the Generator Coordinate Method, where the core electrons were represented by a pseudopotential. The calculated adsorption energies for the (100) and (111) faces are 5,39 and 4,18 kJ/mol, respectively. This simplified model is expected to be suitable for treating complex systems of applied interest.
Resumo:
A study was carried out on the urea geometries using ab initio calculation and Monte Carlo computational simulation of liquids. The ab initio calculated results showed that urea has a non-planar conformation in the gas phase in which the hydrogen atoms are out of the plane formed by the heavy atoms. Free energies associated to the rotation of the amino groups of urea in water were obtained using the Monte Carlo method in which the thermodynamic perturbation theory is implemented. The magnitude of the free energy obtained from this simulation did not permit us to conclude that urea is non-planar in water.
Resumo:
A didactic experiment based on the thermal decomposition of sodium bicarbonate using a reagent found in the marketplace is proposed. The reaction products are identified by qualitative tests and stoichiometric calculations. The thermal stability of carbonates and the influence of lattice energies are discussed, emphasizing periodic trends in the alkali and alkaline earth families. The industrial importance of the reaction is also explored.
Resumo:
This paper presents a study of the interaction of small molecules with ZnO surfaces by means of theoretical methods. The AM1 semi-empirical method was used for optimizing the geometric parameters of adsorbed molecules. The optimized AM1 structures were used in the calculations of the ab initio RHF method with the 3-21G* basis set. The interaction of CO, CO2 and NH3 molecules were studied with (ZnO)22 and (ZnO)60 cluster models. We have analyzed the interaction energy, SCF orbital energies, Mulliken charges and the density of states (DOS).
Resumo:
Internal energy dependence of the competitive unimolecular dissociation channels of dimethyl ether were studied with the statistical RRKM formalism. The C-O and C-H fission reactions and the 1,2-H and 1,3-H shifts, and 1,1-H2 and 1,3-H2 molecular eliminations are discussed as a function of energy dependence of k a(E*), the microcanonical rate constant for production of transition states. C-O fission is the dominant process while reaction channels involving C-H fission, 1,1-H2 and 1,3-H2 elimination and production of MeOH should be competitive at energies around 400 kJ mol-1. The less favorable process is the channel of CH4 formation.
Resumo:
The ellipticines constitute a broad class of molecules with antitumor activity. In the present work we analyzed the structure and properties of a series of ellipticine derivatives in the gas phase and in solution using quantum mechanical and Monte Carlo methods. The results showed a good correlation between the solvation energies in water obtained with the continuum model and the Monte Carlo simulation. Molecular descriptors were considered in the development of QSAR models using the DNA association constant (log Kapp) as biological data. The results showed that the DNA binding is dominated by electronic parameters, with small contributions from the molecular volume and area.
Resumo:
Complexes of Eu3+, Tb3+ and Gd3+ with dipicolinic acid, chelidamic acid and chelidonic acid have been synthesized in order to study the effect of the substituent groups on the luminescence of the lanthanide complexes. The luminescence of the Eu3+ and Tb3+ complexes was quantified by quantum yield measurements. The complexes of Gd3+ have been used to determine the energies of the triplet states of the ligands. The Tb3+ complex synthesized with dipicolinic acid presented the highest quantum yield due to the energy difference between the triplet state of the dipicolinic acid and the emitting level of the Tb3+ ion.
Resumo:
The adsorption capacity of alpha-chitosan and its modified form with succinic anhydride was compared with the traditional adsorbent active carbon by using the dye methylene blue, employed in the textile industry. The isotherms for both biopolymers were classified as SSA systems in the Giles model, more specifically in L class and subgroup 3. The dye concentration in the supernatant in the adsorption assay was determined through electronic spectroscopy. By calorimetric titration thermodynamic data of the interaction between methyene blue and the chemically modified chitosan at the solid/liquid interface were obtained. The enthalpy of the dye/chitosan interaction gave 2.47 ± 0.02 kJ mol-1 with an equilibrium constant of 7350 ± 10 and for the carbon/dye interaction this constant gave 5951 ± 8. The spontaneity of these adsorptions are reflected by the free Gibbs energies of -22.1 ± 0.4 and -21.5 ± 0.2 kJ mol-1, respectively, found for these systems. This new adsorbent derived from a natural polysaccharide is as efficient as activated carbon. However 97% of the bonded dye can be eluted by sodium chloride solution, while this same operation elutes only 42% from carbon. Chitosan is efficient in dye removal with the additional advantage of being cheap, non-toxic, biocompatible and biodegradable.
Resumo:
The thermodynamics of molal partitioning of ketoprofen (KTP) was studied in cyclohexane/buffer (CH/W), octanol/buffer (ROH/W), and dimyristoyl phosphatidylcholine (DMPC), dipalmitoyl phosphatidylcholine (DPPC), and egg lecithin (EGG/W) liposome systems. In all cases the partition coefficients (Kmo/w)were greater than unity; therefore the standard free energies of transfer were negative indicating affinity of KTP for organic media. The Kmo/w values were approximately seventy-fold higher in the ROH/W system compared with the CH/W system. On the other hand, the Kmo/w values were approximately ten or fifty-fold higher in the liposomes compared with the ROH/W system. In all cases, the standard enthalpies and entropies of transfer of KTP were positive indicating some degree of participation of the hydrophobic hydration on partitioning processes.
Resumo:
Activation energy (Ea) is a parameter that can be applied to make predictions about the quality of oils to be used in an ICO engine. In this study, Ea was determined by thermogravimetry following two different procedures: ASTM E 1641 and Model-free kinetics. The energies were calculated in the low temperature oxidation (LTO) region for three Brazilian fuel oils (denominated A, B and C) and the results were equal using both methods: 43 kJ mol-1 (alpha=0.1 to 0.9) for oil A, 48 kJ mol-1 (alpha=0.1 to 0.5) and 65 kJ mol-1 (alpha=0.5 to 0.9) for oil B, and 58 kJ mol-1 (alpha=0.1 to 0.5) and 65 kJ mol-1 (alpha=0.5 to 0.9) for oil C. It was concluded that, among the oils studied, sample A was potentially the best option concerning the behavior in the LTO region.
Resumo:
The effect of substituents on the energies and geometries of 3-hydroxypropenal was studied using the B3LYP/6-311++G(d,p) model. The hydrogen bond energies indicate that the strongest donors and the weakest acceptors present the highest and the weakest hydrogen bonds, respectively, indicating the validity of the Madsen RAHB model. Geometric parameters indicate that the intensity of the hydrogen bond is proportional to the resonance, as suggested by the RHAB model. The effect of substituents diverges from the model proposed by Gilli et al. Sometimes the results indicate that the donor or acceptor effect is more important than the point of substitution.
Resumo:
Sulfur emission in coal power generation is a matter of great environmental concern and limestone sorbents are widely used for reducing such emissions. Thermogravimetry was applied to determine the effects of the type of limestone (calcite and dolomite), particle size (530 and 650 µm) and atmosphere (air and nitrogen) on the kinetics of SO2 sorption by limestone. Isothermal experiments were performed for different temperatures (650 to 950 ºC), at local atmospheric pressure. The apparent activation energies, as indicated by the slope of the Arrhenius plot, resulted between 3.03 and 4.45 kJ mol-1 for the calcite, and 11.24 kJ mol-1 for the dolomite.