36 resultados para Endocytosis modulators
em Scielo Saúde Pública - SP
Resumo:
Trypanomastigote forms of Trypanosoma cruzi were derived from tissue culture and incubated with immune and non-immune human sera. All immune sera showed high titers of specific humoral antibodies of the IgM or the IgG type. Agglutination and swelling of parasites were observed after incubation at 37ºC, but many trypomastigotes remained free-swimming in the sera for two to three days. The quantitiy of immune serum capable of lysing a maximum of 10 x 10 [raised to the power of 6] sensitized red cells was not capable of lysing 4 x 10 [raised to the power of 3] tripomastigotes. Typically, the parasites underwent cyclical changes with the formation of clumps of amastigotes and the appearance of epimastigote forms. Multiplication of the parasites was observed in immune sera. Further, the infectivity of the parasites to susceptible mice was not lost. All sera used produced similar general effects on the growth of the parasite. The antibody bound to T. cruzi appeard to enter cells by antigen-receptor mediated endocytosis. The ferritin-conjugated antibody was internalized and delivered to phagolysosomes where they might be completely degraded to amino-acids. This seemed to be a coupled process by which the immunoglobulin is first bound to specific parasite surface receptor and then rapidly endocytosed by the cell.
Resumo:
Enteropathogenic E. coli (EPEC) infection of Hep-2 cells preoceeds through bacterial attachment to cell surface and internalization of adhered bacteria. EPEC attachment is a prerequisite for cell infection and is mediated by adhesins that recognize carbohydrate-containing receptors on cell membrane. Such endocytosis-inducer adhesins (EIA) also promote EPEC binding to infant enterocytes, suggesting that EIA may have an important role on EPEC gastroenteritis.
Resumo:
Nematode parasites have shown resistance to the anthelmintics, ivermectin and moxidectin, and there is evidence that the over-expression of parasite P-glycoprotein (P-gp) may account, at least in part, for resistance to ivermectin. The objective of this study was to evaluate whether the multidrug resistance (MDR) modulators, verapamil, CL 347.099 (an analog of verapamil) and cyclosporin A, would enhance the efficacy of ivermectin and moxidectin against selected strains of Haemonchus contortus using an in vitro larval migration assay. The modulators had no effects on the number of migrating larvae when used alone. Ivermectin and moxidectin showed a significant (P<0.05) increase in its efficacy by 52.8 and 58.5% respectively, when used in association with verapamil against a moxidectin-selected strain. CL 347,099 also increased significantly (P<0.05) the ivermectin and moxidectin efficacy by 24.2 and 40.0% respectively, against an ivermectin-selected strain and by 40.0 and 75.6% respectively, against an moxidectin-selected strain. At the concentrations tested cyclosporin A showed a variable effect on increasing the efficacy of the anthelmintics against the susceptible and resistant strains.
Resumo:
Calcium oxalate (CaOx) crystals adhere to and are internalized by tubular renal cells and it seems that this interaction is related (positively or negatively) to the appearance of urinary calculi. The present study analyzes a series of mechanisms possibly involved in CaOx uptake by Madin-Darby canine kidney (MDCK) cells. CaOx crystals were added to MDCK cell cultures and endocytosis was evaluated by polarized light microscopy. This process was inhibited by an increase in intracellular calcium by means of ionomycin (100 nM; N = 6; 43.9% inhibition; P<0.001) or thapsigargin (1 µM; N = 6; 33.3% inhibition; P<0.005) administration, and via blockade of cytoskeleton assembly by the addition of colchicine (10 µM; N = 8; 46.1% inhibition; P<0.001) or cytochalasin B (10 µM; N = 8; 34.2% inhibition; P<0.001). Furthermore, CaOx uptake was reduced when the activity of protein kinase C was inhibited by staurosporine (10 nM; N = 6; 44% inhibition; P<0.01), or that of cyclo-oxygenase by indomethacin (3 µM; N = 12; 17.2% inhibition; P<0.05); however, the uptake was unaffected by modulation of potassium channel activity with glibenclamide (3 µM; N = 6), tetraethylammonium (1 mM; N = 6) or cromakalim (1 µM; N = 6). Taken together, these data indicate that the process of CaOx internalization by renal tubular cells is similar to the endocytosis reported for other systems. These findings may be relevant to cellular phenomena involved in early stages of the formation of renal stones.
Resumo:
A construct (AT1R-NF) containing a "Flag" sequence added to the N-terminus of the rat AT1 receptor was stably expressed in Chinese hamster ovary cells and quantified in the cell membrane by confocal microscopy after reaction with a fluorescein-labeled anti-Flag monoclonal antibody. Angiotensin II bound to AT1R-NF and induced endocytosis with a half-time of 2 min. After 60-90 min, fluorescence accumulated around the cell nucleus, suggesting migration of the ligand-receptor complex to the nuclear membrane. Angiotensin antagonists also induced endocytosis, suggesting that a common step in the transduction signal mechanism occurring after ligand binding may be responsible for the ligand-receptor complex internalization.
Resumo:
Proteoglycans are abundant in the developing brain and there is much circumstantial evidence for their roles in directional neuronal movements such as cell body migration and axonal growth. We have developed an in vitro model of astrocyte cultures of the lateral and medial sectors of the embryonic mouse midbrain, that differ in their ability to support neuritic growth of young midbrain neurons, and we have searched for the role of interactive proteins and proteoglycans in this model. Neurite production in co-cultures reveals that, irrespective of the previous location of neurons in the midbrain, medial astrocytes exert an inhibitory or nonpermissive effect on neuritic growth that is correlated to a higher content of both heparan and chondroitin sulfates (HS and CS). Treatment of astrocytes with chondroitinase ABC revealed a growth-promoting effect of CS on lateral glia but treatment with exogenous CS-4 indicated a U-shaped dose-response curve for CS. In contrast, the growth-inhibitory action of medial astrocytes was reversed by exogenous CS-4. Treatment of astrocytes with heparitinase indicated that the growth-inhibitory action of medial astrocytes may depend heavily on HS by an as yet unknown mechanism. The results are discussed in terms of available knowledge on the binding of HS proteoglycans to interactive proteins, with emphasis on the importance of unraveling the physiological functions of glial glycoconjugates for a better understanding of neuron-glial interactions.
Resumo:
There is evidence that the major mediators of stress, i.e., catecholamines and glucocorticoids, play an important role in modulating thymopoiesis and consequently immune responses. Furthermore, there are data suggesting that glucocorticoids influence catecholamine action. Therefore, to assess the putative relevance of glucocorticoid-catecholamine interplay in the modulation of thymopoiesis we analyzed thymocyte differentiation/maturation in non-adrenalectomized and andrenalectomized rats subjected to treatment with propranolol (0.4 mg·100 g body weight-1·day-1) for 4 days. The effects of β-adrenoceptor blockade on thymopoiesis in non-adrenalectomized rats differed not only quantitatively but also qualitatively from those in adrenalectomized rats. In adrenalectomized rats, besides a more efficient thymopoiesis [judged by a more pronounced increase in the relative proportion of the most mature single-positive TCRαβhigh thymocytes as revealed by two-way ANOVA; for CD4+CD8- F (1,20) = 10.92, P < 0.01; for CD4-CD8+ F (1,20) = 7.47, P < 0.05], a skewed thymocyte maturation towards the CD4-CD8+ phenotype, and consequently a diminished CD4+CD8-/CD4-CD8+ mature TCRαβhigh thymocyte ratio (3.41 ± 0.21 in non-adrenalectomized rats vs 2.90 ± 0.31 in adrenalectomized rats, P < 0.05) were found. Therefore, we assumed that catecholaminergic modulation of thymopoiesis exhibits a substantial degree of glucocorticoid-dependent plasticity. Given that glucocorticoids, apart from catecholamine synthesis, influence adrenoceptor expression, we also hypothesized that the lack of adrenal glucocorticoids affected not only β-adrenoceptor- but also α-adrenoceptor-mediated modulation of thymopoiesis.
Resumo:
Trypsin is required in the hemagglutinin (HA) cleavage to in vitro influenza viruses activation. This HA cleavage is necessary for virus cell entry by receptor-mediated endocytosis. Bacteria in the respiratory tract are potential sources of proteases that could contribute to the cleavage of influenza virus in vivo. From 47 samples collected from horses, pigs, and from humans, influenza presence was confirmed in 13 and these samples demonstrated co-infection of influenza with flagellated bacteria, Stenotrophomonas maltophilia from the beginning of the experiments. Despite treatment with antibiotics, the bacteria remained resistant in several of the co-infected samples (48.39%). These bacteria, considered opportunistic invaders from environmental sources, are associated with viral infections in upper respiratory tract of hosts. The protease (elastase), secreted by Stenotrophomonas maltophilia plays a role in the potentiation of influenza virus infection. Proteolytic activity was detected by casein agar test. Positive samples from animals and humans had either a potentiated influenza infectivity or cytopathic effect (CPE) in MDCK and NCI H292 cells, Stenotrophomonas maltophilia were always present. Virus and bacteria were observed ultrastructurally. These in vitro findings show that microbial proteases could contribute to respiratory complications by host protease activity increasing inflammation or destroying endogenous cell protease inhibitors.
Resumo:
The fates of purified 32P-vitellin and 32P-lipophorin were followed in vitellogenic females of Rhodnius prolixus. While the radioactivity from 32P-vitellin 6 hours after injection was found almost exclusively in the ovary, the radioactivity from injected 32P-lipophorin was found distributed among several organs. In the ovary, the radioactivity from 32P-vitellin was associated with the contents of the yolk granules. 32P-lipophorin delivered a great amount of radioactive phospholipids to the ovary with no accumulation of its protein moiety, as observed after its iodination with 131I. The delivery of phospholipids was inhibited at 0ºC and by the metabolic inhibitors, sodium azide and sodium fluoride. Comparison of the radioactivity incorporation from 32P-lipophorin with that of 14C-inulin suggests that the 32P-phospholipids from lipophorin are not taken up by fluid phase endocytosis. The data presented here are compatible with the concept of lipophorin as a carrier of lipids in insects and provide evidence that lipophorin transports phospholipids as shown previously for other classes of lipids. The utilization by the oocytes of the phospholipids transported by lipophorin is discussed.
Resumo:
Insect vitellogenesis involves coordinated activities of the fat body and oocytes. We have studied these activities at the cellular level in the mosquito. During each vitellogenic cycle, the fat body undergoes three successive stages: 1) proliferation of biosynthetic organelles, 2) vitellogenin synthesis, 3) termination of vitellogenin synthesis and degradation of biosynthetic organelles by lysosomes. Analysis with monoclonal antibodies and radiolabelling demonstrated that the mosquito yolk protein consists of two subunits (200-kDa and 65-kDa). Both subunits are glycosylated, their carbohydrate moieties are composed of high-mannose oligosaccharides. The yolk protein subunits are derived from a single 220 kDa precursor detected by an in vitro translation. Oocytes become competent to internalize proteins as a result of juvenile hormone-mediated biogenesis of endocytotic organelles. The yolk protein is then accumulated by receptor-mediated endocytosis. A pathway of the yold protein and factors determining its routing in the oocyte have been studied.
Resumo:
Macrophages and muscle cells are the main targets for invasion of Trypanosoma cruzi. Ultrastructural studies of this phenomenon in vitro showed that invasion occurs by endocytosis, with attachment and internalization being mediated by different components capable of recognizing epi-or trypomastigotes (TRY). A parasitophorus vacuole was formed in both cell types, thereafter fusing with lysosomes. Then, the mechanism of T. cruzi invasion of host cells (HC) is essentially similar (during a primary infection in the abscence of a specific immune response), regardless of wether the target cell is a professional or a non-professional phagocytic cell. Using sugars, lectins, glycosidases, proteinases and proteinase inhibitors, we observed that the relative balance between exposed sialic acid and galactose/N-acetyl galactosamine (GAL) residues on the TRY surface, determines the parasite's capacity to invade HC, and that lectin-mediated phagocytosis with GAL specificity is important for internalization of T. cruzi into macrophages. On the other hand, GAL on the surface to heart muscle cells participate on TRY adhesion. TRY need to process proteolytically both the HC and their own surface, to expose the necessary ligands and receptors that allow binding to, and internalization in the host cell. The diverse range of molecular mechanisms which the parasite could use to invade the host cell may correspond to differences in the available "receptors"on the surface of each specific cell type. Acute phase components, with lectin or proteinase inhibitory activities (a-macroglobulins), may also be involved in T. cruzi-host cell interaction.
Resumo:
Eosinophils are prominent inflammatory cells in asthma and other allergic disorders, as well as in helminthic parasite infections. Recently, eosinophils have been reported to synthesize and store a range of regulatory proteins within their secretory granules (eokines). Eokines comprise a group of cytokines, chemokines, and growth factors which are elaborated by eosinophils. These proteins, and the messages which encode them, appear to be identical to those produced by lymphocytes and other tissues. Interestingly, immunoreactivity to many of these eokines has been found to co-localize to the eosinophil´s secretory granules. In this review, we have discussed the repertoire of 18 eokines so far identified in eosinophils, and focused on four of these, namely, interleukin-2 (IL-2), IL-4, granulocyte/macrophage colony-stimulating factor (GM-CSF), and RANTES. These four eokines co-localize to the crystalloid granules in eosinophils, as shown in studies using subcellular fractionation and immunogold labeling in electron microscopy. During stimulation by physiological triggers, for example, with serum-coated particles, eosinophils release these mediators into the surrounding supernatant. In addition, eokines are likely to be synthesized within eosinophils rather than taken up by endocytosis, as show in detection of mRNA for each of these proteins using in situ hybridization, RT-PCR, and in the case of RANTES, in situ RT-PCR. Eokines synthesis and release from eosinophils challenges the commonly held notion that these cells act downstream of key elements in immune system, and indicate that they may instead belong to the afferent arm of immunity.