48 resultados para Endocrine pancreas
em Scielo Saúde Pública - SP
Resumo:
Diabetes mellitus represents a serious public health problem owing to its global prevalence in the last decade. The causes of this metabolic disease include dysfunction and/or insufficient number of β cells. Existing diabetes mellitus treatments do not reverse or control the disease. Therefore, β-cell mass restoration might be a promising treatment. Several restoration approaches have been developed: inducing the proliferation of remaining insulin-producing cells, de novo islet formation from pancreatic progenitor cells (neogenesis), and converting non-β cells within the pancreas to β cells (transdifferentiation) are the most direct, simple, and least invasive ways to increase β-cell mass. However, their clinical significance is yet to be determined. Hypothetically, β cells or islet transplantation methods might be curative strategies for diabetes mellitus; however, the scarcity of donors limits the clinical application of these approaches. Thus, alternative cell sources for β-cell replacement could include embryonic stem cells, induced pluripotent stem cells, and mesenchymal stem cells. However, most differentiated cells obtained using these techniques are functionally immature and show poor glucose-stimulated insulin secretion compared with native β cells. Currently, their clinical use is still hampered by ethical issues and the risk of tumor development post transplantation. In this review, we briefly summarize the current knowledge of mouse pancreas organogenesis, morphogenesis, and maturation, including the molecular mechanisms involved. We then discuss two possible approaches of β-cell mass restoration for diabetes mellitus therapy: β-cell regeneration and β-cell replacement. We critically analyze each strategy with respect to the accessibility of the cells, potential risk to patients, and possible clinical outcomes.
Resumo:
Insulin and glucagon are the hormonal polypeptides secreted by the B and A cells of the endocrine pancreas, respectively. Their major physiologic effects are regulation of carbohydrate metabolism, but they have opposite effects. Insulin and glucagon have various physiologic roles, in addition to the regulation of carbohydrate metabolism. The physiologic effects of insulin and glucagon on the cell are initiated by the binding of each hormone to receptors on the target cells. Morphologic studies may be useful for relating biochemical, physiologic, and pharmacologic information on the receptors to an anatomic background. Receptor radioautography techniques using radioligands to label specific insulin and glucagon receptors have been successfully applied to many tissues and organs. In this review, current knowledge of the histologic distribution of insulin and glucagon receptors is presented with a brief description of receptor radioautography techniques
Resumo:
A low-protein diet leads to functional and structural pancreatic islet alterations, including islet hypotrophy. Insulin-signaling pathways are involved in several adaptive responses by pancreatic islets. We determined the levels of some insulin-signaling proteins related to pancreatic islet function and growth in malnourished rats. Adult male Wistar rats (N = 20 per group) were fed a 17% protein (normal-protein diet; NP) or 6% protein (low-protein diet; LP), for 8 weeks. At the end of this period, blood glucose and serum insulin and albumin levels were measured. The morphometric parameters of the endocrine pancreas and the content of some proteins in islet lysates were determined. The β-cell mass was significantly reduced (≅65%) in normoglycemic but hypoinsulinemic LP rats compared to NP rats. Associated with these alterations, a significant 30% reduction in insulin receptor substrate-1 and a 70% increase in insulin receptor substrate-2 protein content were observed in LP islets compared to NP islets. The phosphorylated serine-threonine protein kinase (pAkt)/Akt protein ratio was similar in LP and NP islets. The phosphorylated forkhead-O1 (pFoxO1)/FoxO1 protein ratio was decreased by 43% in LP islets compared to NP islets (P < 0.05). Finally, the ratio of phosphorylated-extracellular signal-related kinase 1/2 (pErk1/2) to total Erk1/2 protein levels was decreased by 71% in LP islets compared to NP islets (P < 0.05). Therefore, the reduced β-cell mass observed in LP rats is associated with the reduction of phosphorylation in mitogenic-related signals, FoxO1 and Erk proteins. The cause/effect basis of this association remains to be determined.
Resumo:
Despite extensive genetic and immunological research, the complex etiology and pathogenesis of type I diabetes remains unresolved. During the last few years, our attention has been focused on factors such as abnormalities of islet function and/or microenvironment, that could interact with immune partners in the spontaneous model of the disease, the non-obese diabetic (NOD) mouse. Intriguingly, the first anomalies that we noted in NOD mice, compared to control strains, are already present at birth and consist of 1) higher numbers of paradoxically hyperactive ß cells, assessed by in situ preproinsulin II expression; 2) high percentages of immature islets, representing islet neogenesis related to neonatal ß-cell hyperactivity and suggestive of in utero ß-cell stimulation; 3) elevated levels of some types of antigen-presenting cells and FasL+ cells, and 4) abnormalities of extracellular matrix (ECM) protein expression. However, the colocalization in all control mouse strains studied of fibroblast-like cells (anti-TR-7 labeling), some ECM proteins (particularly, fibronectin and collagen I), antigen-presenting cells and a few FasL+ cells at the periphery of islets undergoing neogenesis suggests that remodeling phenomena that normally take place during postnatal pancreas development could be disturbed in NOD mice. These data show that from birth onwards there is an intricate relationship between endocrine and immune events in the NOD mouse. They also suggest that tissue-specific autoimmune reactions could arise from developmental phenomena taking place during fetal life in which ECM-immune cell interaction(s) may play a key role.
Resumo:
PURPOSE: To report a series of 73 patients with endocrine exophthalmos treated by removal of orbital fat using the transpalpebral approach during the period 1989 to 1999. METHODS: The operation was performed according to the technique described by Olivari. Aesthetic analysis was done preoperatively and postoperatively (more than 6 months after surgery). The number of complications was also observed. RESULTS: The average volume of resected fat was approximately 7.6 mL per orbit. No major complication was observed. In 9 patients with epiphora, all improved. One patient developed postoperative diplopia and 5 complained of temporary diplopia. Appearance improved in 62 patients (85%). CONCLUSION: Surgical removal of orbital fat associated with endocrine exophthalmos provides consistent improvement in appearance with a low rate of complications. Additional procedures may be indicated to improve the cosmetic outcome.
Resumo:
Infertility affects up to 15% of the sexually active population, and in 50% of cases, a male factor is involved, either as a primary problem or in combination with a problem in the female partner. Because many commonly encountered drugs and medications can have a detrimental effect on male fertility, the medical evaluation should include a discussion regarding the use of recreational and illicit drugs, medications, and other substances that may impair fertility. With the knowledge of which drugs and medications may be detrimental to fertility, it may be possible to modify medication regimens or convince a patient to modify habits to decrease adverse effects on fertility and improve the chances of achieving a successful pregnancy. Concern is growing that male sexual development and reproduction have changed for the worse over the past 30 to 50 years. Although some reports find no changes, others suggest that sperm counts appear to be decreasing and that the incidence of developmental abnormalities such as hypospadias and cryptorchidism appears to be increasing, as is the incidence of testicular cancer. These concerns center around the possibility that our environment is contaminated with chemicals - both natural and synthetic - that can interact with the endocrine system.
Resumo:
The epithelial cells of Panstrongylus megistus male accessory glands (MAG) present ultrastructural characteristics of a secretory cell. Their secretory products are accumulated in the lumen of the four MAG lobes. During the first 8 days of adult life a strong secretion activity occurs, accumulating enough material to produce the first spermatophore. Cerebral neurosecretions as well as juvenile hormone are both involved in MAG secretory activity regulation. Juvenile hormone seems to be the responsible for the stimulation of most protein synthesis in male accessory glands. Cerebral neurosecretion seems to be necessary to stimulate juvenile hormone production and release by the corpus allatum. Furthermore, neurosecretion is required for some polypeptides synthesis by MAG. Although topic application of precocene II to adult males does not reproduce the same effects on MAG as does allatectomy, this compound causes strong reduction on male reproductive capacity.
Resumo:
Insulinomas are rare endocrine tumors with an estimated incidence of 1(one) per million. Optimal therapy for all islet tumors of the pancreas is curative surgical resection. However, previous reports have show that, in the absence of preoparative localization, insulinoma may not be found intraoperatively in about 20% of patients. With current imaging technology, including serial computed tomography (CT), magnetic resonance imaging (MRI) and ultrasonography, localization of insulinomas less than 2cm remains inadequate. This case report shows that selective intraarterial calcium injection with hepatic venous sampling for insulin levels measured is a efficient technique for the localization of insulinomas.
Resumo:
The authors present an evidence-based case report of a patient with agenesis or pseudoagenesis of the dorsal pancreas.
Resumo:
This study reports on changes in the number of somatostatin-like immunoreactive (SOM-LI) endocrine cells in the porcine descending colon, caused by chemically driven inflammation, axotomy and proliferative enteropathy (PE). The distribution pattern of SOM-LI endocrine cells has been studied using the routine single-labelling immunofluorescence technique. Semi-quantitative evaluation of the number of the SOM-immunostained endocrine cells within the mucosal layer of the porcine descending colon has been based on counting of all endocrine cells immunoreactive to SOM per unit area (0,1 mm²). Under physiological conditions the number of SOM-LI endocrine cells has been shown to constitute 3,30±0,22. All applied pathological processes resulted in changes in the SOM-like immunoreactivity, which varied in particular processes studied. The number of SOM-LI endocrine cells increased to 6,28±0,31 and 4,43±0,35 during chemically driven inflammation and proliferative enteropathy, respectively, and decreased to 1,17%±0,16 after axotomy. The obtained results suggest that SOM-LI endocrine cells may participate in various pathological states within porcine descending colon and their functions probably depend on the type of pathological factor.
Resumo:
Cytokines are molecules that were initially discovered in the immune system as mediators of communication between various types of immune cells. However, it soon became evident that cytokines exert profound effects on key functions of the central nervous system, such as food intake, fever, neuroendocrine regulation, long-term potentiation, and behavior. In the 80's and 90's our group and others discovered that the genes encoding various cytokines and their receptors are expressed in vascular, glial, and neuronal structures of the adult brain. Most cytokines act through cell surface receptors that have one transmembrane domain and which transduce a signal through the JAK/STAT pathway. Of particular physiological and pathophysiological relevance is the fact that cytokines are potent regulators of hypothalamic neuropeptidergic systems that maintain neuroendocrine homeostasis and which regulate the body's response to stress. The mechanisms by which cytokine signaling affects the function of stress-related neuroendocrine systems are reviewed in this article.
Resumo:
In addition to the mutations that underlie most cases of the multiple endocrine neoplasia type 1 (MEN1) syndrome, somatic mutations of the MEN1 gene have also been described in sporadic tumors like gastrinomas, insulinomas and bronchial carcinoid neoplasm. We examined exon 2 of this gene, where most of the mutations have been described, in 148 endocrine and nonendocrine sporadic tumors. DNA was obtained by phenol/chloroform extraction and ethanol precipitation from 92 formalin-fixed, paraffin-embedded samples, and from 40 fresh tumor tissue samples. We used 5 pairs of primers to encompass the complete coding sequence of exon 2 of the MEN1 gene that was screened by the polymerase chain reaction-single-stranded conformation polymorphism (PCR-SSCP) technique in 78 sporadic thyroid cancers: 28 follicular adenomas, 35 papillary carcinomas, 14 follicular carcinomas, and 1 anaplastic thyroid carcinoma. We also examined 46 adrenal lesions (3 hyperplasias, 3 adenomas and 35 adrenocortical carcinomas, 2 pheochromocytomas, 2 ganglioneuroblastomas, and 1 lymphoma) and 24 breast cancers (6 noninvasive, 16 infiltrating ductal, and 2 invasive lobular tumors). The PCR product of 5 tumors suspected to present band shifts by SSCP was cloned. Direct sense and antisense sequencing did not identify mutations. These results suggest that the MEN1 gene is not important in breast, thyroid or adrenal sporadic tumorigenesis. Because the frequency of mutations varies significantly among tumor subgroups and allelic deletions are frequently observed at 11q13 in thyroid and adrenal cancers, another tumor suppressor gene residing in this region is likely to be involved in the tumorigenesis of these neoplasms.
Resumo:
The purpose of the present study was to modulate the secretion of insulin and glucagon in Beagle dogs by stimulation of nerves innervating the intact and partly dysfunctional pancreas. Three 33-electrode spiral cuffs were implanted on the vagus, splanchnic and pancreatic nerves in each of two animals. Partial dysfunction of the pancreas was induced with alloxan. The nerves were stimulated using rectangular, charge-balanced, biphasic, and constant current pulses (200 µs, 1 mA, 20 Hz, with a 100-µs delay between biphasic phases). Blood samples from the femoral artery were drawn before the experiment, at the beginning of stimulation, after 5 min of stimulation, and 5 min after the end of stimulation. Radioimmunoassay data showed that in the intact pancreas stimulation of the vagal nerve increased insulin (+99.2 µU/ml) and glucagon (+18.7 pg/ml) secretion and decreased C-peptide secretion (-0.15 ng/ml). Splanchnic nerve stimulation increased insulin (+1.7 µU/ml), C-peptide (+0.01 ng/ml), and glucagon (+50 pg/ml) secretion, whereas pancreatic nerve stimulation did not cause a marked change in any of the three hormones. In the partly dysfunctional pancreas, vagus nerve stimulation increased insulin (+15.5 µU/ml), glucagon (+11 pg/ml), and C-peptide (+0.03 ng/ml) secretion. Splanchnic nerve stimulation reduced insulin secretion (-2.5 µU/ml) and increased glucagon (+58.7 pg/ml) and C-peptide (+0.39 ng/ml) secretion, and pancreatic nerve stimulation increased insulin (+0.2 µU/ml), glucagon (+5.2 pg/ml), and C-peptide (+0.08 ng/ml) secretion. It was concluded that vagal nerve stimulation can significantly increase insulin secretion for a prolonged period of time in intact and in partly dysfunctional pancreas.
Resumo:
Upper gastrointestinal endoscopy is often accompanied by tachycardia which is known to be an important pathogenic factor in the development of myocardial ischemia. The pathogenesis of tachycardia is unknown but the condition is thought to be due to the endocrine response to endoscopy. The purpose of the present study was to investigate the effects of sedation on the endocrine response and cardiorespiratory function. Forty patients scheduled for diagnostic upper gastrointestinal endoscopy were randomized into 2 groups. While the patients in the first group did not receive sedation during upper gastrointestinal endoscopy, the patients in the second group were sedated with intravenous midazolam at the dose of 5 mg for those under 65 years or 2.5 mg for those aged 65 years or more. Midazolam was administered by slow infusion. In both groups, blood pressure, ECG tracing, heart rate, and peripheral oxygen saturation (SpO2) were monitored during endoscopy. In addition, blood samples for the determination of cortisol, glucose and C-reactive protein levels were obtained from patients in both groups prior to and following endoscopy. Heart rate and systolic arterial pressure changes were within normal limits in both groups. Comparison of the two groups regarding the values of these two parameters did not reveal a significant difference, while a statistically significant reduction in SpO2 was found in the sedation group. No significant differences in serum cortisol, glucose or C-reactive protein levels were observed between the sedated and non-sedated group. Sedation with midazolam did not reduce the endocrine response and the tachycardia developing during upper gastrointestinal endoscopy, but increased the reduction in SpO2.