39 resultados para Electrochemical sensors

em Scielo Saúde Pública - SP


Relevância:

60.00% 60.00%

Publicador:

Resumo:

The electrochemistry field has increased in recent years, specially in the search for new sensors to monitor specific analyte in complex samples. In order to improve electrodes, many rhodium compounds have been used as electron mediators for novel sensors development. The most used compounds for this purpose are metal, metal complexes and some organic dyes. Rhodium complexes are known by their good catalytic properties and it could be useful in the sensor field. However, there are only a few reports, on the use of rhodium complexes in sensors and biosensors. A brief review of the electrochemistry of rhodium complexes and some discription of their properties which make those compounds suitable for development of sensor and biosensor.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The use of carbon fibers to develop new sensors and biosensors has received great attention due to its characteristics and electrochemical properties. A brief presentation about history, properties, characteristics, composition and structure of the carbon fibers are shown in this paper. Several applications of the carbon fibers in electroanalytical chemistry for determination of metals and organic molecules in environmental and clinical samples are also described.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The most relevant advances on the analytical applications of glutathione determination based on glutathione redox cycle and the antioxidant system are given. The main enzymes that participate of the glutathione metabolism are the glutathione peroxidase and glutathione reductase. The glutathione peroxidase has a major role in the removal of hydrogen peroxide and lipid peroxides from the cells. These enzymes, operating in tandem with catalase and superoxide dismutase promote a scavenging of oxyradical products in tissues minimizing damages caused by these species. Reduced glutathione is the major intracellular thiol found in mammals and changes in the glutathione concentration in biological fluids or tissues may provide a useful marker in certain disorders like hemolytic anemia, myocardial oxidative stress and in the investigation of some kinds of cancers. Particular attention is devoted to the main advantages supplied by biosensors in which there is an incorporation of bioactive materials for the glutathione determination. The correlation between stability and sensitivity of some reduced glutathione electrochemical sensors is discussed.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The use of sol-gel materials to develop new biosensors has received great attention due to its characteristics and versatility of sol-gel process. An overview is presented of the state-of-the-art of electrochemical biosensors employing sol-gel materials. Low-temperature, porous sol-gel ceramics represent a new class for the immobilization of biomolecules. The rational design of sol-gel sensing materials, based on the judicious choice of the starting alkoxide, encapsulated reagents, and preparation conditions, allows tailoring of material properties in a wide range, and offers great potential for the development of electrochemical biosensors.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The most relevant advances on the analytical applications of chemically modified electrodes (CME) are presented. CME have received great attention due to the possibility of electrode surface modification including chemisorption, composite generation and polymer coating. In recent years, the interest in CME has increased overall to improve the sensitivity and selectivity of the electroanalytical probes, considering the electron mediator incorporation and the new conducting polymers development. The general procedures employed for the electrode modification and the operational characteristics of some electrochemical sensors are discussed.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Self-assembled monolayers (SAMs) modified electrodes exhibit unique behavior that can greatly benefit electrochemical sensing. This brief review highlights the applications of SAM modified electrodes in electroanalytical chemistry. After a general introduction, which includes the approaches for SAM development, different electrochemical systems for detecting inorganic and organic species are described and discussed. Special attention to the coupling of biological sensing element to the SAM is given, which can selectively recognize the analyte. Future prospects are also evaluated.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Since 1992, the carbon paste electrodes modified with humic acids have been used for studying the behavior of metals in aqueous solutions. Many parameters influence the performance of the electrodes, such as the humic acid ratio, the nature of the humic acid, the accumulation time, the pH, the scan rate, and the preparation of the electrodes itself. There are various methos of preparing the electrodes. The goal of this paper is to review some of them. The advantages of using electrodes modified with humic acids as electrochemical sensors for evaluating metals in aqueous solution are stressed.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Electrochemical sensors have attracted considerable attention in recent years because they provide data about the chemical state of our surroundings and the dynamics of the chemical transformations in the form a spatially resolved image. Particular interest has been directed to measurements in restricted-volume samples as new technologies enable the fabrication of miniaturized versions of sensors with reproducible characteristics. Taking these aspects into consideration, this review focuses on the use of electrodes of micrometer dimensions to acquire chemical information in microdomains in which concentrations may not be spatially homogeneous. This is possible because microelectrodes allow fast-response measurements with micrometer resolution to be performed. On the other hand, the use of microelectrodes as amperometric sensors presents an inherent drawback owing to the insufficient specificity toward the substrate of interest. Hence, some comments on strategies to enhance the selectivity of amperometric sensors are also made. Finally, recent applications of structurally microscopic electrodes as in vivo sensors are shown, as well as a prospect of the future trend in this field.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Analysis at microenvironments, like single cells or in minute volumes (nL), is an area of great interest for analytical and biological sciences. Measurements at these experimental conditions demand analytical tools (microelectrodes) capable of monitoring with rapid response, good resolution and minimal perturbation of the system. The major drawbacks in producing these microscopic electrodes have been largely overcome, principally due to the development of new fabrication methods. In this review, these procedures are described with emphasis to those devoted to the construction of microelectrodes for application in microenvironments. Examples of our efforts to use these devices as effective electrochemical sensors are also addressed.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The most relevant advances on analytical applications of ionic liquids (IL) as binder in the construction of electrochemical sensors and biosensors based on carbon paste are presented. This new class of solvents - the IL - has received great attention in electroanalytical researches due to the excellent physical and chemical properties of these materials, such as high conductivity, low toxicity, good stability, large electrochemical window and catalytic ability. Recently, the interest in electrodes modified with IL, especially when combined with metallic nanoparticles, has increased expressively due to improve the sensitivity and others advantages discussed in this review.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Chemically modified electrodes have been studied to obtain new and better electrochemical sensors. Transparent conductive oxides, such as fluorine-doped tin-oxide (FTO), shows electrical conductivity comparable to metals and are potential candidates for new sensors. In this work, FTO was modified by gold electrodeposition from chlorine-auric acid solution using cyclic voltammetry (CV) technique. A set of different materials were produced, varying the scan number. Scanning electron microscopy and electrochemical impedance spectroscopy were performed for the characterization of electrodes surfaces. From this analysis was possible to observe the resistive, capacitive and difusional aspects from all kind of modified electrodes produced, establishing a relationship between this parameters and the scan number. The electrode with 100 scans of CV presented better characteristics for an electrochemical sensor; it has the lowest global impedance and rising of capacitive behavior (related to electrical double layer formation) at lower frequencies. This electrode was tested for paracetamol and caffeine detection. The results showed a high specificity, decreased oxidation potential (0.58 V and 0.97 Vvs. SCE, for paracetamol and caffeine, respectively) and low detection limits (0.82 and 0.052 µmol L-1).

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This work is directed to the study and evaluation of gas diffusion electrodes as detectors in hydrogen sensors. Electrochemical experiments were carried out with rotating disk electrodes with a thin porous coating of the catalyst as a previous step to select useful parameters for the sensor. An experimental arrangement made in the laboratory that simulates the sensor was found appropriate to detect volumetric hydrogen percentages above 0.25% in mixtures H2:N2. The system shows a linear response for volumetric percentages of hydrogen between 0.25 and 2 %.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Single-stranded DNA (ssDNA) is a prerequisite for electrochemical sensor-based detection of parasite DNA and other diagnostic applications. To achieve this detection, an asymmetric polymerase chain reaction method was optimised. This method facilitates amplification of ssDNA from the human lymphatic filarial parasite Wuchereria bancrofti. This procedure produced ssDNA fragments of 188 bp in a single step when primer pairs (forward and reverse) were used at a 100:1 molar ratio in the presence of double-stranded template DNA. The ssDNA thus produced was suitable for immobilisation as probe onto the surface of an Indium tin oxide electrode and hybridisation in a system for sequence-specific electrochemical detection of W. bancrofti. The hybridisation of the ssDNA probe and target ssDNA led to considerable decreases in both the anodic and the cathodic currents of the system's redox couple compared with the unhybridised DNA and could be detected via cyclic voltammetry. This method is reproducible and avoids many of the difficulties encountered by conventional methods of filarial parasite DNA detection; thus, it has potential in xenomonitoring.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

After an introductory discussion emphasising the importance of electrochemistry for the so-called Green Chemical Processes, the article presents a short discussion of the classical ozone generation technologies. Next a revision of the electrochemical ozone production technology focusing on such aspects as: fundamentals, latest advances, advantages and limitations of this technology is presented. Recent results about fundamentals of electrochemical ozone production obtained in our laboratory, using different electrode materials (e.g. boron doped diamond electrodes, lead dioxide and DSAÒ-based electrodes) also are presented. Different chemical processes of interest to the solution of environmental problems involving ozone are discussed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

MIPs are synthetic polymers that are used as biomimetic materials simulating the mechanism verified in natural entities such as antibodies and enzymes. Although MIPs have been successfully used as an outstanding tool for enhancing the selectivity or different analytical approaches, such as separation science and electrochemical and optical sensors, several parameters must be optimized during their synthesis. Therefore, the state-of-the-art of MIP production as well as the different polymerization methods are discussed. The potential selectivity of MIPs in the extraction and separation techniques focusing mainly on environmental, clinical and pharmaceutical samples as applications for analytical purposes is presented.