25 resultados para Effective radiative properties
em Scielo Saúde Pública - SP
Resumo:
While the influence of water in Helicobacter pylori culturability and membrane integrity has been extensively studied, there are little data concerning the effect of this environment on virulence properties. Therefore, we studied the culturability of water-exposed H. pylori and determined whether there was any relation with the bacterium’s ability to adhere, produce functional components of pathogenicity and induce inflammation and alterations in apoptosis in an experimental model of human gastric epithelial cells. H. pylori partially retained the ability to adhere to epithelial cells even after complete loss of culturability. However, the microorganism is no longer effective in eliciting in vitro host cell inflammation and apoptosis, possibly due to the non-functionality of the cag type IV secretion system. These H. pylori-induced host cell responses, which are lost along with culturability, are known to increase epithelial cell turnover and, consequently, could have a deleterious effect on the initial H. pylori colonisation process. The fact that adhesion is maintained by H. pylori to the detriment of other factors involved in later infection stages appears to point to a modulation of the physiology of the pathogen after water exposure and might provide the microorganism with the necessary means to, at least transiently, colonise the human stomach.
Resumo:
Properties of a claim loam soil, collected in Aranjuez (Madrid) and enriched with organic matter and microorganisms, were evaluated under controlled temperature and moisture conditions, over a period of three months. The following treatments were carried out: soil (control); soil + 50 t ha-1 of animal manure (E50); soil + 50 t ha-1 of animal manure + 30 L ha-1 of effective microorganisms (E50EM); soil + 30 t ha-1 of the combination of various green crop residues and weeds (RC30) and soil + 30 t ha-1 of the combination of various green crop residues and weeds + 30 L ha-1 of effective microorganisms (RC30EM). Soil samples were taken before and after incubation and their physical, chemical, and microbiological parameters analyzed. Significant increase was observed in the production of exopolysaccharides and basic phosphatase and esterase enzyme activities in the treatments E50EM and RC30EM, in correlation with the humification of organic matter, water retention at field capacity, and the cationic exchange capacity (CEC) of the same treatments. The conclusion was drawn that the incorporation of a mixture of effective microorganisms (EM) intensified the biological soil activity and improved physical and chemical soil properties, contributing to a quick humification of fresh organic matter. These findings were illustrated by the microbiological activities of exopolysaccharides and by alkaline phosphatase and esterase enzymes, which can be used as early and integrated soil health indicators.
Resumo:
Little is currently known about modifications in edaphic characteristics caused by short-rotation eucalyptus and the impacts of these alterations on the sustainability of eucalyptus wood production. This study was carried out to identify theses changes at five sites of eucalyptus plantation in the region of the Rio Doce Valley, state of Minas Gerais, Brazil. Areas with more than three previous eucalyptus cycles, adjacent to pasture land or native forest, were chosen. Soil samples were collected and soil fertility analyzed by routine methods and other fractionation methods in order to measure alterations in the K, Ca and Mg contents as a consequence of eucalyptus cultivation. In the eucalyptus areas, reductions in the exchangeable Ca2+, Mg2+ and K+ contents and pH were observed and increased Al3+ and H + Al contents. Of all nutrients, only P contents (Mehlich-1 P) increased in the eucalyptus areas. The reduction in exchangeable forms and in medium-term soil nutrient pools indicates the need for higher nutrient rates than the currently applied in order to prevent nutritional limitations and soil nutrient exhaustion. After several eucalyptus rotations there was a recovery in the SOM content in comparison to degraded pasture soils, although not to the level of the native forest soil. The positive correlation between effective CEC and medium-term non-exchangeable Ca, Mg and K with SOM emphasizes the need for adequate fertilizer and plant residue management to sustain or even increase forest productivity in future cycles.
Resumo:
An accurate estimation of hydraulic fluxes in the vadose zone is essential for the prediction of water, nutrient and contaminant transport in natural systems. The objective of this study was to simulate the effect of variation of boundary conditions on the estimation of hydraulic properties (i.e. water content, effective unsaturated hydraulic conductivity and hydraulic flux) in a one-dimensional unsaturated flow model domain. Unsaturated one-dimensional vertical water flow was simulated in a pure phase clay loam profile and in clay loam interlayered with silt loam distributed according to the third iteration of the Cantor Bar fractal object Simulations were performed using the numerical model Hydrus 1D. The upper and lower pressure heads were varied around average values of -55 cm for the near-saturation range. This resulted in combinations for the upper and lower constant head boundary conditions, respectively, of -50 and -60 cm, -40 and -70 cm, -30 and -80 cm, -20 and -90 cm, and -10 and -100 cm. For the drier range the average head between the upper and lower boundary conditions was set to -550 cm, resulting in the combinations -500 and -600 cm, -400 and -700 cm, -300 and -800 cm, -200 and -900 cm, and -100 and -1,000 cm, for upper and lower boundary conditions, respectively. There was an increase in water contents, fluxes and hydraulic conductivities with the increase in head difference between boundary conditions. Variation in boundary conditions in the pure phase and interlayered one-dimensional profiles caused significant deviations in fluxes, water contents and hydraulic conductivities compared to the simplest case (a head difference between the upper and lower constant head boundaries of 10 cm in the wetter range and 100 cm in the drier range).
Resumo:
The impact of agro-industrial organic wastes in the environment can be reduced when used in agriculture. From the standpoint of soil fertility, residue applications can increase the organic matter content and provide nutrients for plants. This study evaluated the effect of biological sludge from gelatin industry on the chemical properties of two Ultisols (loamy sand and sandy clay) and an Oxisol (clay). The experiment lasted 120 days and was carried out in laboratory in a completely randomized design with factorial arrangement, combining the three soils and six biological sludge rates (0, 100, 200, 300, 400, and 500 m³ ha-1), with three replications. Biological sludge rates of up to 500 m³ ha-1 decreased soil acidity and increased the effective cation exchange capacity (CEC) and N, Ca, Mg, and P availability, without exceeding the tolerance limit for Na. The increase in exchangeable base content, greater than the effective CEC, indicates that the major part of cations added by the sludge remains in solution and can be lost by leaching.
Resumo:
Although the influence of clay mineralogy on soil physical properties has been widely studied, spatial relationships between these features in Alfisols have rarely been examined. The purpose of this work was to relate the clay minerals and physical properties of an Alfisol of sandstone origin in two slope curvatures. The crystallographic properties such as mean crystallite size (MCS) and width at half height (WHH) of hematite, goethite, kaolinite and gibbsite; contents of hematite and goethite; aluminium substitution (AS) and specific surface area (SSA) of hematite and goethite; the goethite/(goethite+hematite) and kaolinite/(kaolinite+gibbsite) ratios; and the citrate/bicarbonate/dithionite extractable Fe (Fe d) were correlated with the soil physical properties through Pearson correlation coefficients and cross-semivariograms. The correlations found between aluminium substitution in goethite and the soil physical properties suggest that the degree of crystallinity of this mineral influences soil properties used as soil quality indicators. Thus, goethite with a high aluminium substitution resulted in large aggregate sizes and a high porosity, and also in a low bulk density and soil penetration resistance. The presence of highly crystalline gibbsite resulted in a high density and micropore content, as well as in smaller aggregates. Interpretation of the cross-semivariogram and classification of landscape compartments in terms of the spatial dependence pattern for the relief-dependent physical and mineralogical properties of the soil proved an effective supplementary method for assessing Pearson correlations between the soil physical and mineralogical properties.
Resumo:
Tillage systems are a key element of the technology of crop production, both with a view to crop yield and from the perspective of soil conservation and sustainability of the production system. The aim of this paper was to evaluate the effects of five tillage systems on the physical properties of a cohesive Yellow Argisol. The experiment was installed in the field on January 21, 2011 and lasted 260 days, in an area previously used as pasture with Brachiaria grass without liming or fertilization, but irrigated by a low pressure spray system. The treatments, in five replications and in a randomized block design, consisted of: 1) disk plow (twice) + disk harrow + ridge-furrow tillage (raising a ridge along the planting row), 135 days after transplanting (DP + RID); 2) disk plow (twice) + disk harrow (DP no RID); 3) subsoiler (SB); 4) disk plow (twice) + disk harrow + scarification with three shanks along the plant row (DP + SPR); and 5) disk plow (twice) + disk harrow + scarification with three shanks in the total area (DP + STA). In all tillage systems, furrows were mechanically opened for the papaya plants. After the treatments, the mechanical resistance to penetration was determined, followed by soil moisture, mean weight diameter (MWD), geometric mean diameter (GMD), bulk density (BD), macroporosity (Ma), microporosity (Mi), and number of fruits per plant. There were differences in penetration resistance (PR) between treatments. The subsoiler was more effective to decrease RP to a distance of 0.35 m from the plants, perpendicular to the plant row. The scarifier resulted in a lower PR than DP or SB, even at the depth of 0.40 m, and it was more effective at greater distances perpendicular to the plant. All tillage systems induced a PR between 2.0 and 3.0 MPa at the depth with the highest concentration of papaya tree roots (0-0.25 m), improving the physical conditions to this depth. There was no statistical difference among the treatments for BD, Ma, Mi, MWD, and GMD at a depth of 0.20 m. The disk plow changed the physical properties of the soil most intensely to a depth of 0.20 m. The use of scarification, reduced tillage with a forest subsoiler, or ridge-furrow tillage did not improve the physical properties in the rhizosphere. Reduced tillage with a forest subsoiler resulted in a lower number of fruits per plant than all other treatments, which did not differ from each other.
Resumo:
The use of cover crops has been suggested as an effective method to maintain and/or increase the organic matter content, while maintaining and/or enhancing the soil physical, chemical and biological properties. The fertility of Cerrado soils is low and, consequently, phosphorus levels as well. Phosphorus is required at every metabolic stage of the plant, as it plays a role in the processes of protein and energy synthesis and influences the photosynthetic process. This study evaluated the influence of cover crops and phosphorus rates on soil chemical and biological properties after two consecutive years of common bean. The study analyzed an Oxisol in Selvíria (Mato Grosso do Sul, Brazil), in a randomized block, split plot design, in a total of 24 treatments with three replications. The plot treatments consisted of cover crops (millet, pigeon pea, crotalaria, velvet bean, millet + pigeon pea, millet + crotalaria, and millet + velvet bean) and one plot was left fallow. The subplots were represented by phosphorus rates applied as monoammonium phosphate (0, 60 and 90 kg ha-1 P2O5). In August 2011, the soil chemical properties were evaluated (pH, organic matter, phosphorus, potential acidity, cation exchange capacity, and base saturation) as well as biological variables (carbon of released CO2, microbial carbon, metabolic quotient and microbial quotient). After two years of cover crops in rotation with common bean, the cover crop biomass had not altered the soil chemical properties and barely influenced the microbial activity. The biomass production of millet and crotalaria (monoculture or intercropped) was highest. The biological variables were sensitive and responded to increasing phosphorus rates with increases in microbial carbon and reduction of the metabolic quotient.
Resumo:
There is a great lack of information from soil surveys in the southern part of the State of Amazonas, Brazil. The use of tools such as geostatistics may improve environmental planning, use and management. In this study, we aimed to use scaled semivariograms in sample design of soil physical properties of some environments in Amazonas. We selected five areas located in the south of the state of Amazonas, Brazil, with varied soil uses, such as forest, archaeological dark earth (ADE), pasture, sugarcane cropping, and agroforestry. Regular mesh grids were set up in these areas with 64 sample points spaced at 10 m from each other. At these points, we determined the particle size composition, soil resistance to penetration, moisture, soil bulk density and particle density, macroporosity, microporosity, total porosity, and aggregate stability in water at a depth of 0.00-0.20 m. Descriptive and geostatistical analyses were performed. The sample density requirements were lower in the pasture area but higher in the forest. We concluded that managed-environments had differences in their soil physical properties compared to the natural forest; notably, the soil in the ADE environment is physically improved in relation to the others. The physical properties evaluated showed a structure of spatial dependence with a slight variability of the forest compared to the others. The use of the range parameter of the semivariogram analysis proved to be effective in determining an ideal sample density.
Resumo:
In Brazil, grazing mismanagement may lead to soil and pasture degradation. To impede this process, integrated cropping systems such as silvopasture have been an effective alternative, allied with precision agriculture based on soil mapping for site-specific management. In this study, we aimed to define the soil property that best sheds light on the variability of eucalyptus and forage yield. The experiment was conducted in the 2011/12 crop year in Ribas do Rio Pardo, Mato Grosso do Sul State, Brazil. We analyzed linear and spatial correlations between eucalyptus traits and physical properties of a Typic Quartzipsamment at two depths (0.00-0.10 and 0.10-0.20 m). For that purpose, we set up a geostatistical grid for collection at 72 points. Gravimetric moisture in the 0.00-0.10 m layer is an important index of soil physical quality, showing correlation to eucalyptus circumference at breast height (CBH) in a Typic Quartzipsamment. With an increase in resistance to penetration in the soil surface layer, there is an increase in eucalyptus height and in neutral detergent fiber content in the forage crop. From a spatial point of view, the height of eucalyptus and the neutral detergent fiber of forage can be estimated by co-kriging analysis with soil resistance to penetration. Resistance to penetration values above 2.3 MPa indicated higher yielding sites.
Resumo:
The atomic shell structure can be observed by inspecting the experimental periodic properties of the Periodic Table. The (quantum) shell structure emerges from these properties and in this way quantum mechanics can be explicitly shown considering the (semi-)quantitative periodic properties. These periodic properties can be obtained with a simple effective Bohr model. An effective Bohr model with an effective quantum defect (u) was considered as a probe in order to show the quantum structure embedded in the Periodic Table. u(Z) shows a quasi-smoothed dependence of Z, i.e., u(Z) ≈ Z2/5 - 1.
Resumo:
The objective of this study was to evaluate the effects of the nitrogen fertilization in the form of swine deep bed in the properties of a quartz-sand neosol. The organic compound used was the deep bed made with rice hulls, from a commercial swine finishing system farm. Deep bed samples have been collected at various points in the installation in order to obtain a representative composite sample which has been fractionated in a 2.0 mm sieve and submitted to a 50-day maturation period. Then, agronomic value analyses were done. The experimental design was completely randomized. The treatments consisted of 0; 75; 150 and 300 mg dm-3 of N doses of deep bed as well as an additional treatment with ammonium sulfate at a 150 mg dm-3 of N. The experimental period in the greenhouse was 45 days, where the soil was cultivated with maize. After the experiment completion, further soil properties analyses were done. From the results, it was noted that the organic fertilization with deep bed provided a significant increase in the levels of potassium, in the sum of the bases, in the effective CEC, in the CEC at pH 7.0 and in the percentage of saturation.
Resumo:
This paper gives a detailed presentation of the Substitution-Newton-Raphson method, suitable for large sparse non-linear systems. It combines the Successive Substitution method and the Newton-Raphson method in such way as to take the best advantages of both, keeping the convergence features of the Newton-Raphson with the low requirements of memory and time of the Successive Substitution schemes. The large system is solved employing few effective variables, using the greatest possible part of the model equations in substitution fashion to fix the remaining variables, but maintaining the convergence characteristics of the Newton-Raphson. The methodology is exemplified through a simple algebraic system, and applied to a simple thermodynamic, mechanical and heat transfer modeling of a single-stage vapor compression refrigeration system. Three distinct approaches for reproducing the thermodynamic properties of the refrigerant R-134a are compared: the linear interpolation from tabulated data, the use of polynomial fitted curves and the use of functions derived from the Helmholtz free energy.
Resumo:
Photosynthetic performance of distinct marine macroalgae, Ulva fasciata Delile (green alga), Lobophora variegata (J. V. Lamouroux) Womersley ex E. C. Oliveira (brown alga), and Plocamium brasiliensis (Greville) M. A. Howe & W. R. Taylor (red alga), were compared using a pulse amplitude-modulated fluorometer. The maximum quantum yield (Fv/Fm) ranged from 0.80 to 0.51, and the lowest value was found in P. brasiliensis. Under 400 µmol photons m-2 s-1 irradiance, the highest value of photochemical quenching (qP = 0.92 ± 0.13) was observed for U. fasciata. The red alga P. brasiliensis dissipated high amounts of excitation energy (qN = 0.56 ± 0.09), resulting in relatively low values for the effective quantum yield of PS-II (0.23 ± 0.04), as well as for the relative electron transport rate (3.3 ± 0.7). The high photosynthetic potential found for U. fasciata partially explains the species ability for rapid growth and high productivity.
Resumo:
Adult Ascaris suum body extract (Asc) prepared from male and female worms (with stored eggs) down-regulates the specific immune response of DBA/2 mice to ovalbumin (OA) and preferentially stimulates a Th2 response to its own components, which is responsible for the suppression of the OA-specific Th1 response. Here, we investigated the participation of soluble extracts prepared from male or female worms or from eggs (E-Asc) in these immunological events. Extracts from either sex (1 mg/animal) or E-Asc (0.35 or 1 mg protein/animal) suppressed the delayed-type hypersensitivity (DTH) reaction (60-85%), proliferative response (50-70%), IL-2 and IFN-gamma secretion (below detection threshold) and IgG1 antibody production (70-90%) of DBA/2 mice to OA. A dose of 0.1 mg E-Asc/animal did not change DTH or proliferation, but was as effective as 0.35 mg in suppressing IL-2 and IFN-gamma, and OA-specific IgG1 antibodies. Lymph node cells from DBA/2 mice injected with Asc (1 mg/animal) or a high dose of E-Asc (1 mg protein/animal) secreted IL-4 upon in vitro stimulation with concanavalin A. As previously demonstrated for Asc, the cytokine profile obtained with the E-Asc was dose dependent and changed towards Th1 when a low dose (0.1 mg protein/animal) was used. Taken together, these results suggest that adult worms of either sex and eggs induce the same type of T cell response and share similar immunosuppressive properties.