4 resultados para Education--New England--18th century

em Scielo Saúde Pública - SP


Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper registers reports about dipterans made by three Portuguese who lived in Brazil during the 18th century. Luiz Gomes Ferreira, in his book "Erário mineral" ["Mineral revenue"], wrote curious passages related with myiasis-causing flies of the genus Cochliomyia. José Rodrigues de Mello registered, in Latin verses, the folklore for curing myiases caused by Cochliomyia hominivorax in cattle. Luiz dos Santos Vilhena, in the last of his twenty letters dealing with several aspects of life in Brazil, made reference to horseflies, human bot flies and mosquitos.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The private archive of the Brazilian Imperial Family holds a wealth of little known documents about the education of the daughters of Emperor D. Pedro II, especially of the eldest, Isabel, Princess Imperial. Science, particularly chemistry, for which her father had a particular fondness, occupied an important place in the girl's education. The study of these documents sheds a new light on the contrast between female education in the country in general, during most of the 19th century, and the careful upbringing envisaged by the Emperor for his future successor.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Although several chemical elements were not known by end of the 18th century, Mendeleyev came up with an astonishing achievement: the periodic table of elements. He was not only able to predict the existence of (then) new elements but also to provide accurate estimates of their chemical and physical properties. This is certainly a relevant example of the human intelligence. Here, we intend to shed some light on the following question: Can an artificial intelligence system yield a classification of the elements that resembles, in some sense, the periodic table? To achieve our goal, we have fed a self-organized map (SOM) with information available at Mendeleyev's time. Our results show that similar elements tend to form individual clusters. Thus, SOM generates clusters of halogens, alkaline metals and transition metals that show a similarity with the periodic table of elements.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The marine environment is certainly one of the most complex systems to study, not only because of the challenges posed by the nature of the waters, but especially due to the interactions of physical, chemical and biological processes that control the cycles of the elements. Together with analytical chemists, oceanographers have been making a great effort in the advancement of knowledge of the distribution patterns of trace elements and processes that determine their biogeochemical cycles and influences on the climate of the planet. The international academic community is now in prime position to perform the first study on a global scale for observation of trace elements and their isotopes in the marine environment (GEOTRACES) and to evaluate the effects of major global changes associated with the influences of megacities distributed around the globe. This action can only be performed due to the development of highly sensitive detection methods and the use of clean sampling and handling techniques, together with a joint international program working toward the clear objective of expanding the frontiers of the biogeochemistry of the oceans and related topics, including climate change issues and ocean acidification associated with alterations in the carbon cycle. It is expected that the oceanographic data produced this coming decade will allow a better understanding of biogeochemical cycles, and especially the assessment of changes in trace elements and contaminants in the oceans due to anthropogenic influences, as well as its effects on ecosystems and climate. Computational models are to be constructed to simulate the conditions and processes of the modern oceans and to allow predictions. The environmental changes arising from human activity since the 18th century (also called the Anthropocene) have made the Earth System even more complex. Anthropogenic activities have altered both terrestrial and marine ecosystems, and the legacy of these impacts in the oceans include: a) pollution of the marine environment by solid waste, including plastics; b) pollution by chemical and medical (including those for veterinary use) substances such as hormones, antibiotics, legal and illegal drugs, leading to possible endocrine disruption of marine organisms; and c) ocean acidification, the collateral effect of anthropogenic emissions of CO2 into the atmosphere, irreversible in the human life time scale. Unfortunately, the anthropogenic alteration of the hydrosphere due to inputs of plastics, metal, hydrocarbons, contaminants of emerging concern and even with formerly "exotic" trace elements, such us rare earth elements is likely to accelerate in the near future. These emerging contaminants would likely soon present difficulties for studies in pristine environments. All this knowledge brings with it a great responsibility: helping to envisage viable adaptation and mitigation solutions to the problems identified. The greatest challenge faced by Brazil is currently to create a framework project to develop education, science and technology applied to oceanography and related areas. This framework would strengthen the present working groups and enhance capacity building, allowing a broader Brazilian participation in joint international actions and scientific programs. Recently, the establishment of the National Institutes of Science and Technology (INCTs) for marine science, and the creation of the National Institute of Oceanographic and Hydrological Research represent an exemplary start. However, the participation of the Brazilian academic community in the latest assaults on the frontier of chemical oceanography is extremely limited, largely due to: i. absence of physical infrastructure for the preparation and processing of field samples at ultra-trace level; ii. limited access to oceanographic cruises, due to the small number of Brazilian vessels and/or absence of "clean" laboratories on board; iii. restricted international cooperation; iv. limited analytical capacity of Brazilian institutions for the analysis of trace elements in seawater; v. high cost of ultrapure reagents associated with processing a large number of samples, and vi. lack of qualified technical staff. Advances in knowledge, analytic capabilities and the increasing availability of analytical resources available today offer favorable conditions for chemical oceanography to grow. The Brazilian academic community is maturing and willing to play a role in strengthening the marine science research programs by connecting them with educational and technological initiatives in order to preserve the oceans and to promote the development of society.