40 resultados para ERYTHROCYTE-MEMBRANES

em Scielo Saúde Pública - SP


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Understanding the membrane solubilization process and finding effective solubilizing agents are crucial challenges in biochemical research. Here we report results on the interaction of the novel linear alkylamido propyl dimethyl amino propanosulfonate detergents, ASB-14 and ASB-16, with human erythrocyte membranes. An estimation of the critical micelle concentration of these zwitterionic detergents (ASB-14 = 100 µM and ASB-16 = 10 µM) was obtained using electron paramagnetic resonance. The amount of proteins and cholesterol solubilized from erythrocytes by these detergents was then determined. The hemolytic activities of the ASB detergents were assayed and the detergent/lipid molar ratios for the onset of hemolysis (Re sat) and total lysis (Re sol) were calculated, allowing the determination of the membrane binding constants (Kb). ASB-14 presented lower membrane affinity (Kb = 7050 M-1) than ASB-16 (Kb = 15610 M-1). The amount of proteins and cholesterol solubilized by both ASB detergents was higher while Re sat values (0.22 and 0.08 detergent/lipid for ASB-14 and ASB-16, respectively) were smaller than those observed with the classic detergents CHAPS and Triton X-100. These results reveal that, besides their well-known use as membrane protein solubilizers to enhance the resolution of two dimensional electrophoresis/mass spectrometry, ASB-14 and ASB-16 are strong hemolytic agents. We propose that the physicochemical properties of ASB detergents determine their membrane disruption efficiency and can help to explain the improvement in the solubilization of membrane proteins, as reported in the literature.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Babesiosis is one of the most important diseases affecting livestock agriculture worldwide. Animals from the subspecies Bos taurus indicus are more resistant to babesiosis than those from Bos taurus taurus. The genera Babesia and Plasmodium are Apicomplexa hemoparasites and share features such as invasion of red blood cells (RBC). The glycoprotein Duffy is the only human erythrocyte receptor for Pasmodium vivax and a mutation which abolishes expression of this glycoprotein on erythrocyte surfaces is responsible for making the majority of people originating from the indigenous populations of West Africa resistant to P. vivax. The current work detected and quantified the Duffy antigen on Bos taurus indicus and Bos taurus taurus erythrocyte surfaces using a polyclonal antibody in order to investigate if differences in susceptibility to Babesia are due to different levels of Duffy antigen expression on the RBCs of these animals, as is known to be the case in human beings for interactions of Plasmodium vivax-Duffy antigen. ELISA tests showed that the antibody that was raised against Duffy antigens detected the presence of Duffy antigen in both subspecies and that the amount of this antigen on those erythrocyte membranes was similar. These results indicate that the greater resistance of B. taurus indicus to babesiosis cannot be explained by the absence or lower expression of Duffy antigen on RBC surfaces.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The literature carries many theories about the mechanism of action of local anesthetics (LA). We can highlight those focusing the direct effect of LA on the sodium channel protein and the ones that consider the interaction of anesthetic molecules with the lipid membrane phase. The interaction between local anesthetics and human erythrocyte membranes has been studied by ¹H and 31P nuclear magnetic resonance spectroscopy. It was found that lidocaine (LDC) and benzocaine (BZC) bind to the membranes, increase the mobility of the protons of the phospholipid's acyl chains, and decrease the mobility and/or change the structure of the polar head groups. The results indicate that lidocaine molecules are inserted across the polar and liquid interface of the membrane, establishing both electrostatic (charged form) and hydrophobic (neutral form) interactions. Benzocaine locates itself a little deeper in the bilayer, between the interfacial glycerol region and the hydrophobic core. These changes in mobility or conformation of membrane lipids could affect the Na+-channel protein insertion in the bilayer, stabilizing it in the inactivated state, thus causing anesthesia.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Erythrocytes are useful in evaluating K+ transport pathways involved in internal K+ balance. Several forms of H+,K+-ATPase have been described in nephron segments active in K+ transport. Furthermore, the activity of a ouabain-insensitive isoform of H+,K+-ATPase expressed in collecting duct cells may be modulated by acid-base status. Various assays were performed to determine if a ouabain-insensitive K+-ATPase is present in rat erythrocytes and, if so, whether it plays a role in internal K+ balance. Kinetic studies demonstrated that maximal stimulation of enzyme activity was achieved with 2.5 mM K+ at pH 7.4. Subsequent experiments were performed on erythrocyte membranes collected from animals submitted to varying degrees of K+ homeostasis: control rats, K+-depleted rats, K+-loaded rats, and rats rendered hyperkalemic due to acute renal failure. As observed in the collecting duct cell studies, there was a significant decrease in the activity of ouabain-insensitive K+-ATPase in the erythrocytes of both K+-loaded and metabolically alkalotic K+-depleted rats. However, this enzyme activity in erythrocyte membranes of rats with metabolic acidosis-related hyperkalemia was similar to that of control animals. This finding may be interpreted as resulting from two potentially modulating factors: the stimulating effect that metabolic acidosis has on K+-ATPase and the counteracting effect that hyperkalemia and uremia have on metabolic acidosis. In summary, we present evidence of a ouabain-insensitive K+-ATPase in erythrocytes, whose activity is modulated by acid-base status and K+ levels.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

4-Nerolidylcatechol (4-NC) is found in Pothomorphe umbellataroot extracts and is reported to have a topical protective effect against UVB radiation-induced skin damage, toxicity in melanoma cell lines, and antimalarial activity. We report a comparative study of the antioxidant activity of 4-NC and α-tocopherol against lipid peroxidation initiated by two free radical-generating systems: 2,2′-azobis(2-aminopropane) hydrochloride (AAPH) and FeSO4/H2O2, in red blood cell ghost membranes and in egg phosphatidylcholine (PC) vesicles. Lipid peroxidation was monitored by membrane fluidity changes assessed by electron paramagnetic resonance spectroscopy of a spin-labeled lipid and by the formation of thiobarbituric acid-reactive substances. When lipoperoxidation was initiated by the hydroxyl radical in erythrocyte ghost membranes, both 4-NC and α-tocopherol acted in a very efficient manner. However, lower activities were observed when lipoperoxidation was initiated by the peroxyl radical; and, in this case, the protective effect of α-tocopherol was lower than that of 4-NC. In egg PC vesicles, malondialdehyde formation indicated that 4-NC was effective against lipoperoxidation initiated by both AAPH and FeSO4/H2O2, whereas α-tocopherol was less efficient in protecting against lipoperoxidation by AAPH, and behaved as a pro-oxidant for FeSO4/H2O2. The DPPH (2,2-diphenyl-1-picrylhydrazyl) free-radical assay indicated that two free radicals were scavenged per 4-NC molecule, and one free radical was scavenged per α-tocopherol molecule. These data provide new insights into the antioxidant capacity of 4-NC, which may have therapeutic applications for formulations designed to protect the skin from sunlight irradiation.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Schistosoma mansoni causes liver disease by inducing granulomatous inflammation. This favors formation of reactive oxygen species, including superoxide ions, hydrogen peroxide and hydroxyl radicals all of which may induce lipid peroxidation. We have evaluated lipid peroxidation in 18 patients with hepatosplenic schistosomiasis mansoni previously treated with oxamniquine followed by splenectomy, ligature of the left gastric vein and auto-implantation of spleen tissue, by measuring levels of erythrocyte-conjugated dienes and plasma malondialdehyde (MDA). Age-matched, healthy individuals (N = 18) formed the control group. Erythrocyte-conjugated dienes were extracted with dichloromethane/methanol and quantified by UV spectrophotometry, while plasma MDA was measured by reaction with thiobarbituric acid. Patient erythrocytes contained two times more conjugated dienes than control cells (584.5 ± 67.8 vs 271.7 ± 20.1 µmol/l, P < 0.001), whereas the increase in plasma MDA concentration (about 10%) was not statistically significant. These elevated conjugated dienes in patients infected by S. mansoni suggest increased lipid peroxidation in cell membranes, although this was not evident when a common marker of oxidative stress, plasma MDA, was measured. Nevertheless, these two markers of lipid peroxidation, circulating MDA and erythrocyte-conjugated dienes, correlated significantly in both patient (r = 0.62; P < 0.01) and control (r = 0.57; P < 0.05) groups. Our data show that patients with schistosomiasis have abnormal lipid peroxidation, with elevated erythrocyte-conjugated dienes implying dysfunctional cell membranes, and also imply that this may be attenuated by the redox capacity of antioxidant agents, which prevent accumulation of plasma MDA.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In a period of time of five years, all patients who exhibited viscerocutaneous form of loxoscelism were investigated for erythrocyte glucose-6-phosphate deficiency, and in two patients out of seven it was found this deficiency. This finding suggests that this genetical enzyme deficiency could account for the hemolysis after Loxosceles bite, at least in some of the cases.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Rosetting, i.e. the spontaneous binding of uninfected to malaria infected erythrocytes and endothelial cytoadherence may hinder the blood flow and lead to serve Plasmodium falciparum malaria. Falciparum isolates obtained from unconscious patients all form rosettes and/or express a significantly higher man rosetting rate than isolates from patients with uncomplicated malaria. Furthermore, sera of patients with cerebral malaria are devoid of anti-rosetting activity while sera from patients with mild disease carry high levels of anti-rosetting antibodies. The presence of anti-rosetting antibodies also seems important for the efficient interaction of rosetting infected rbc and leucocytes. Two parasite derived rosetting ligands of Mr 22k and Mr28K named "rosettins, have been found on the surface of rosetting infected erythrocytes. CD36 has in at least some strains of parasites been found to function as a rosetting receptor on the uninfectederythrocyte. Heparin disrupts rosettes of P. falciparum in vitro and inhibits the sequestration of rosetting cells ex vivo. In conclusion, rosetting seems a crucial factor in the development of cerebral malaria and treatment of patients with anti-rosetting substances might become an effectivew adjunct in the treatment of severe malaria.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Numerous proteinase activities have been shown to be essential for the survival of Plasmodium falciparum. One approach to antimalarial chemotherapy, would be to block specifically one or several of these activities, by using compounds structurally analogous to the substrates of these proteinases. Such a strategy requires a detailed knowledge of the active site of the proteinase, in order to identify the best substrate for the proteinase. Aiming at developing such a strategy, two proteinases previously identified in our laboratory, were chosen for further characterization of their molecular structure and properties: the merozoite proteinase for erythrocytic invasion (MPEI), involved in the erythrocyte invasion by the merozoites, and the Pf37 proteinase, which hydrolyses human spectrin in vitro.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We have developed a model for designing antimalarial drugs based on interference with an essential metabolism developed by Plasmodium during its intraerythrocytic cycle, phospholipid (PL) metabolism. The most promising drug interference is choline transporter blockage, which provides Plasmodium with a supply of precursor for synthesis of phosphatidylcholine (PC), the major PL of infected erythrocytes. Choline entry is a limiting step in this metabolic pathway and occurs by a facilitated-diffusion system involving an asymmetric carrier operating according to a cyclic model. Choline transport in the erythrocytes is not sodium dependent nor stereospecific as demonstrated using stereoisomers of alpha and beta methylcholine. These last two characteristics along with distinct effects of nitrogen substitution on transport rate demonstrate that choline transport in the infected erythrocyte possesses characteristics quite distinct from that of the nervous system. This indicates a possible discrimination between the antimalarial activity (inhibition of choline transport in the infected erythrocyte) and a possible toxic effect through inhibition of choline entry in synaptosomes. Apart from the de novo pathway of choline, PC can be synthesized by N-methylation from phosphatidylethanolamine (PE). There is a de novo pathway for PE biosynthesis from ethanolamine in infected cells but phosphatidylserine (PS) decarboxylation also occurs. In addition, PE can be directly and abundantly synthesized from serine decarboxylation into ethanolamine, a pathway which is absent from the host. The variety of the pathways that exist for the biosynthesis of one given PL led us to investigate whether an equilibrium can occur between all PL metabolic pathways. Indeed, if alternative (compensative) pathway(s) can operate after blockage of the de novo PC biosynthesis pathway this would indicate a potential mechanism for resistance acquisition. Up until now, there is no evidence of such a compensative process occurring in Plasmodium-infected erythrocytes under physiological conditions. Besides, the discovery of a highly parasite-specific pathway (serine decarboxylation and the presence of PS synthase) constitutes a very attractive and promising target, which could be attacked if resistances are built up against choline analogs. Indeed, potential inhibitions of the serine decarboxylase pathway could be very useful in acting instead of, or in surgery with, choline analogs.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The intraerythrocytic malarial parasite is involved in an extremely intensive anabolic activity while it resides in its metabolically quiescent host cell. The necessary fast uptake of nutrients and the discharge of waste product, are guaranteed by parasite-induced alterations of the constitutive transporters of the host cell and the production of new parallel pathways. The membrane of the host cell thus becomes permeable to phospholipids, purine bases and nucleosides, small non-electrolytes, anions and cations. When the new pathways are quantitatively unimportant, classical inhibitors of native transporters can be used to inhibit parasite growth. Several compounds were found to effectively inhibit the new pathways and consequently, parasite growth. The pathways have also been used to introduce cytotoxic agents. The parasitophorous membrane consists of channels which are highly permeable to small solutes and display no ion selectivity. Transport of some cations and anions across the parasite membrane is rapid and insensitive to classical inhibitors, and in some cases it is mediated by specific antiporters which respond to their respective inhibitors. Macromolecules have been shown to reach the parasitophorous space through a duct contiguous with the host cell membrane, and subsequently to be endocytosed at the parasite membrane. The simultaneous presence of the parasitophorous membrane channels and the duct, however, is incompatible with experimental evidences. No specific inhibitors were found as yet that would efficiently inhibit transport through the channels or the duct.