23 resultados para Double-stranded RNA binding protein
em Scielo Saúde Pública - SP
Resumo:
To characterise the trypanosomatid-exclusive RNA-binding protein TcRBP19, we analysed the phenotypic changes caused by its overexpression. Although no evident changes were observed when TcRBP19 was ectopically expressed in epimastigotes, the metacyclogenesis process was affected. Notably, TcRBP19 overexpression also led to a decrease in the number of infected mammalian cells. These findings suggest that TcRBP19 may be involved in the life cycle progression of the Trypanosoma cruzi parasite.
Resumo:
The great expansion in the number of genome sequencing projects has revealed the importance of computational methods to speed up the characterization of unknown genes. These studies have been improved by the use of three dimensional information from the predicted proteins generated by molecular modeling techniques. In this work, we disclose the structure-function relationship of a gene product from Leishmania amazonensis by applying molecular modeling and bioinformatics techniques. The analyzed sequence encodes a 159 aminoacids polypeptide (estimated 18 kDa) and was denoted LaPABP for its high homology with poly-A binding proteins from trypanosomatids. The domain structure, clustering analysis and a three dimensional model of LaPABP, basically obtained by homology modeling on the structure of the human poly-A binding protein, are described. Based on the analysis of the electrostatic potential mapped on the model's surface and conservation of intramolecular contacts responsible for folding stabilization we hypothesize that this protein may have less avidity to RNA than it's L. major counterpart but still account for a significant functional activity in the parasite. The model obtained will help in the design of mutagenesis experiments aimed to elucidate the mechanism of gene expression in trypanosomatids and serve as a starting point for its exploration as a potential source of targets for a rational chemotherapy.
Resumo:
The objective of this study was to assess vitamin A status and association between acute diarrhoea and plasma levels of vitamin A through cross-sectional comparison in children. Plasma vitamin A was measured by colorimetric method of Neeld & Pearson and RBP by radial immunodiffusion technique. Seventy eight children (aged 18-119 months), 26 with current history of diarrhoea and 52 children as controls (outpatient from the Santa Casa de Misericórdia Hospital in metropolitan area of São Paulo City, Brazil) were studied. Children with history of diarrhoea showed significant low levels (mean ± s.e.) as compared to controls, vitamin A (15.87 ± 1.4 µg/dl vs. 21.14 ± 1.15 µg/dl, p < 0.007) and RBP (1.70 ± 0.2 mg/dl vs. 2.52 ±0.11 mg/dl). Multivariate logistic regression adjusted by sex, age, nutritional status and mother education revealed association between diarrhoea and inadequate levels of vitamin A and RBP.
Resumo:
Vaccines in schistosomiasis using homologous antigens have been studied extensively in experimentally infected mammalian hosts. Vaccines using heterologous antigens have received comparatively less attention. This review summarizes recent work on a heterologous 12 kDa Fasciola hepatica antigenic polypeptide which cross reacts with Schistosoma mansoni. A cDNA has been cloned and sequenced, and the predicted amino acid sequence of the recombinant protein has been shown to have significant (44) identity with a 14 kDa S. mansoni fatty acid binding protein. Thus in the parasitic trematodes fatty acid binding proteins may be potential vaccine candidates. The F. hepatica recombinant protein has been overexpressed and purified and denoted rFh15. Preliminary rFh15 migrates more slowly (i.e. may be slightly larger) than nFh12 on SDS-PAGE and has a predicted pI of 6.01 vs. observed pI of 5.45. Mice infected with F. hepatica develop antibodies to nFh12 by 2 weeks of infection vs. 6 weeks of infection to rFh15; on the other hand, mice with schistosomiasis mansoni develop antibodies to both nFh12 and rFh15 by 6 weeks of infection. Both the F. hepatica and S. mansoni cross-reactive antigens may be cross-protective antigens with the protection inducing capability against both species.
Resumo:
The role of intracellular free polyamine (putrescine and spermidine) pools in multiple resistance to aminoglycoside antibiotics was investigated among in vitro selected kanamycin-resistant Escherichia coli J53 mutants expressing diminished oligopeptide-binding protein (OppA) levels and/or defective ornithine decarboxylase (ODC) activity. The results suggest that diminished OppA content, but not defective ODC activity expression, increased the relative concentration of free spermidine as compared to the wild type strain. Moreover, by adding exogenous polyamines or polyamine synthesis inhibitors to cultures with different mutant strains, a direct relationship between the intracellular OppA levels and resistance to kanamycin was revealed. Collectively these results further suggest a complex relation among OppA expression, aminoglycoside resistance and polyamine metabolism.
Resumo:
A polyhistidine-tagged recombinant tegumental protein Schistosoma japonicum very lowdensity lipoprotein binding protein (SVLBP) from adult Schistosoma japonicum was expressed in Escherichia coli. The affinity purified rSVLBP was used to vaccinate mice. The worm numbers and egg deposition recovered from the livers and veins of the immunized mice were 33.5% and 47.6% less than that from control mice, respectively (p<0.05). There was also a marked increase in the antibody response in vaccinated mice: the titer of IgG1 and IgG2a, IgG2b in the vaccinated group was significantly higher than that in the controls (>1:6,400 in total IgG). In a comparison of the reactivity of sera from healthy individuals and patients with rSVLBP, recognition patterns against this parasite tegumental antigen varied among different groups of the individuals. Notably, the average titres of anti-rSVLBP antibody in sera from faecal egg-negative individuals was significantly higher than that in sera from the faecal egg-positives, which may be reflect SVLBP-specific protection. These results suggested that the parasite tegumental protein SVLBP was a promising candidate for further investigation as a vaccine antigen for use against Asian schistosomiasis.
The zinc finger protein TcZFP2 binds target mRNAs enriched during Trypanosoma cruzi metacyclogenesis
Resumo:
Trypanosomes are parasitic protozoa in which gene expression is primarily controlled through the regulation of mRNA stability and translation. This post-transcriptional control is mediated by various families of RNA-binding proteins, including those with zinc finger CCCH motifs. CCCH zinc finger proteins have been shown to be essential to differentiation events in trypanosomatid parasites. Here, we functionally characterise TcZFP2 as a predicted post-transcriptional regulator of differentiation in Trypanosoma cruzi. This protein was detected in cell culture-derived amastigotes and trypomastigotes, but it was present in smaller amounts in metacyclic trypomastigote forms of T. cruzi. We use an optimised recombinant RNA immunopreciptation followed by microarray analysis assay to identify TcZFP2 target mRNAs. We further demonstrate that TcZFP2 binds an A-rich sequence in which the adenosine residue repeats are essential for high-affinity recognition. An analysis of the expression profiles of the genes encoding the TcZFP2-associated mRNAs throughout the parasite life cycle by microarray hybridisation showed that most of the associated mRNAs were upregulated in the metacyclic trypomastigote forms, also suggesting a role for TcZFP2 in metacyclic trypomastigote differentiation. Knockdown of the orthologous Trypanosoma brucei protein levels showed ZFP2 to be a positive regulator of specific target mRNA abundance.
Resumo:
Lutzomyia longipalpis s.l. is the main vector of American visceral leishmaniasis (AVL) and occurs as a species complex. DNA samples from two Brazilian sympatric species that differ in pheromone and courtship song production were used to analyse molecular polymorphisms in an odorant-binding protein ( obp29 ) gene. OBPs are proteins related to olfaction and are involved in activities fundamental to survival, such as foraging, mating and choice of oviposition site. In this study, the marker obp29 was found to be highly polymorphic in Lu. longipalpis s.l. , with no fixed differences observed between the two species. A pairwise fixation index test indicated a moderate level of genetic differentiation between the samples analysed.
Resumo:
Plasmodium vivax infects human erythrocytes through a major pathway that requires interaction between an apical parasite protein, the Duffy binding protein (PvDBP) and its receptor on reticulocytes, the Duffy antigen/receptor for chemokines (DARC). The importance of the interaction between PvDBP (region II, DBPII) and DARC to P. vivax infection has motivated our malaria research group at Oswaldo Cruz Foundation (state of Minas Gerais, Brazil) to conduct a number of immunoepidemiological studies to characterise the naturally acquired immunity to PvDBP in populations living in the Amazon rainforest. In this review, we provide an update on the immunology and molecular epidemiology of PvDBP in the Brazilian Amazon - an area of markedly unstable malaria transmission - and compare it with data from other parts of Latin America, as well as Asia and Oceania.
Resumo:
The stability of penicillin-binding protein 3 (PBP3), a cell septum synthesizing protein, was analyzed at different incubation temperatures in three Escherichia coli K12 strains carrying a PBP3-overproducing plasmid. The stability of PBP3 was significantly reduced in stationary phase cells shifted to 42°C for 4 h, compared to samples incubated at 28 or 37°C. The half-life of PBP3 in the C600 strain was 60 min at 42°C, while samples incubated at 28 or 37°C had PBP3 half-lives greater than 4 h. Analysis of the PBP3 content in mutants deficient in rpoS (coding for the stationary phase sigma factor, sigmaS) and rpoH (coding for the heat shock sigma factor, sigma32) genes after shift to 42°C showed that stability of the protein was controlled by sigmaS but not by sigma32. These results suggest that control of the PBP3 levels in E. coli K12 is through a post-transcriptional mechanism regulated by the stationary phase regulon. We demonstrated that stability of PBP3 in E. coli K12 involves degradation of the protein. Moreover, we observed that incubation of cells at 42°C significantly reduces the stability of PBP3 in early stationary phase cells in a process controlled by sigmaS.
Resumo:
Endometrium is one of the fastest growing human tissues. Sex hormones, estrogen and progesterone, in interaction with several growth factors, control its growth and differentiation. Insulin-like growth factor 1 (IGF-1) interacts with cell surface receptors and also with specific soluble binding proteins. IGF-binding proteins (IGF-BP) have been shown to modulate IGF-1 action. Of six known isoforms, IGF-BP-1 has been characterized as a marker produced by endometrial stromal cells in the late secretory phase and in the decidua. In the current study, IGF-1-BP concentration and affinity in the proliferative and secretory phase of the menstrual cycle were measured. Endometrial samples were from patients of reproductive age with regular menstrual cycles and taking no steroid hormones. Cytosolic fractions were prepared and binding of 125I-labeled IGF-1 performed. Cross-linking reaction products were analyzed by SDS-polyacrylamide gel electrophoresis (7.5%) followed by autoradiography. 125I-IGF-1 affinity to cytosolic proteins was not statistically different between the proliferative and secretory endometrium. An approximately 35-kDa binding protein was identified when 125I-IGF-1 was cross-linked to cytosol proteins. Secretory endometrium had significantly more IGF-1-BP when compared to proliferative endometrium. The specificity of the cross-linking process was evaluated by the addition of 100 nM unlabeled IGF-1 or insulin. Unlabeled IGF-1 totally abolished the radioactivity from the band, indicating specific binding. Insulin had no apparent effect on the intensity of the labeled band. These results suggest that IGF-BP could modulate the action of IGF-1 throughout the menstrual cycle. It would be interesting to study this binding protein in other pathologic conditions of the endometrium such as adenocarcinomas and hyperplasia.
Resumo:
The discovery of double-stranded RNA-mediated gene silencing has rapidly led to its use as a method of choice for blocking a gene, and has turned it into one of the most discussed topics in cell biology. Although still in its infancy, the field of RNA interference has already produced a vast array of results, mainly in Caenorhabditis elegans, but recently also in mammalian systems. Micro-RNAs are short hairpins of RNA capable of blocking translation, which are transcribed from genomic DNA and are implicated in several aspects from development to cell signaling. The present review discusses the main methods used for gene silencing in cell culture and animal models, including the selection of target sequences, delivery methods and strategies for a successful silencing. Expected developments are briefly discussed, ranging from reverse genetics to therapeutics. Thus, the development of the new paradigm of RNA-mediated gene silencing has produced two important advances: knowledge of a basic cellular mechanism present in the majority of eukaryotic cells and access to a potent and specific new method for gene silencing.
Resumo:
Significant improvements have been noted in heart transplantation with the advent of cyclosporine. However, cyclosporine use is associated with significant side effects, such as chronic renal failure. We were interested in evaluating the incidence of long-term renal dysfunction in heart transplant recipients. Fifty-three heart transplant recipients were enrolled in the study. Forty-three patients completed the entire evaluation and follow-up. Glomerular (serum creatinine, creatinine clearance measured, and creatinine clearance calculated) and tubular functions (urinary retinol-binding protein, uRBP) were re-analyzed after 18 months. At the enrollment time, the prevalence of renal failure ranged from 37.7 to 54% according to criteria used to define it (serum creatinine > or = 1.5 mg/dL and creatinine clearance <60 mL/min). Mean serum creatinine was 1.61 ± 1.31 mg/dL (range 0.7 to 9.8 mg/dL) and calculated and measured creatinine clearances were 67.7 ± 25.9 and 61.18 ± 25.04 mL min-1 (1.73 m²)-1, respectively. Sixteen of the 43 patients who completed the follow-up (37.2%) had tubular dysfunction detected by increased levels of uRBP (median 1.06, 0.412-6.396 mg/dL). Eleven of the 16 patients (68.7%) with elevated uRBP had poorer renal function after 18 months of follow-up, compared with only eight of the 27 patients (29.6%) with normal uRBP (RR = 3.47, P = 0.0095). Interestingly, cyclosporine trough levels were not different between patients with or without tubular and glomerular dysfunction. Renal function impairment is common after heart transplantation. Tubular dysfunction, assessed by uRBP, correlates with a worsening of glomerular filtration and can be a useful tool for early detection of renal dysfunction.
Resumo:
Mycobacterium tuberculosis kills more people than any other single pathogen, with an estimated one-third of the world's population being infected. Among those infected, only 10% will develop the disease. There are several demonstrations that susceptibility to tuberculosis is linked to host genetic factors in twins, family and associated-based case control studies. In the past years, there has been dramatic improvement in our understanding of the role of innate and adaptive immunity in the human host defense to tuberculosis. To date, attention has been paid to the role of genetic host and parasitic factors in tuberculosis pathogenesis mainly regarding innate and adaptive immune responses and their complex interactions. Many studies have focused on the candidate genes for tuberculosis susceptibility ranging from those expressed in several cells from the innate or adaptive immune system such as Toll-like receptors, cytokines (TNF-α, TGF-β, IFN-γ, IL-1b, IL-1RA, IL-12, IL-10), nitric oxide synthase and vitamin D, both nuclear receptors and their carrier, the vitamin D-binding protein (VDBP). The identification of possible genes that can promote resistance or susceptibility to tuberculosis could be the first step to understanding disease pathogenesis and can help to identify new tools for treatment and vaccine development. Thus, in this mini-review, we summarize the current state of investigation on some of the genetic determinants, such as the candidate polymorphisms of vitamin D, VDBP, Toll-like receptor, nitric oxide synthase 2 and interferon-γ genes, to generate resistance or susceptibility to M. tuberculosis infection.