14 resultados para Dissolved Inorganic Nitrogen
em Scielo Saúde Pública - SP
Resumo:
The Amazon River basin is important in the contribution of dissolved material to oceans (4% worldwide). The aim of this work was to study the spatial and the temporal variability of dissolved inorganic materials in the main rivers of the Amazon basin. Data from 2003 to 2011 from six gauging stations of the ORE-HYBAM localized in Solimões, Purus, Madeira and Amazon rivers were used for this study. The concentrations of Ca2+, Na+, K+, Mg2+, Cl-, SO4 -2, HCO3 - and SiO2 were analyzed. At the stations of Solimões and Amazon rivers, the concentrations of Ca2+, Mg2+, HCO3 - and SO4 -2 had heterogeneous distribution over the years and did not show seasonality. At the stations of Madeira river, the concentration of these ions had seasonality inversely proportional to water discharge (dilution-concentration effect). Similar behavior was observed for the concentrations of Cl- and Na+ at the stations of the Solimões, Amazon and Madeira rivers, indicating almost constant release of Cl- and Na+ fluxes during the hydrological cycle. K+ and SiO2 showed almost constant concentrations throughout the years and all the stations, indicating that their flows depend on the river discharge variation. Therefore, the temporal variability of the dissolved inorganic material fluxes in the Solimões and Amazon rivers depends on the hydro-climatic factor and on the heterogeneity of the sources. In the Madeira and Purus rivers there is less influence of these factors, indicating that dissolved load fluxes are mainly associated to silicates weathering. As the Solimões basin contributes approximately 84% of the total flux of dissolved materials in the basin and is mainly under the influence of a hydro-climatic factor, we conclude that the temporal variability of this factor controls the temporal variability of the dissolved material fluxes of the Amazon basin.
Resumo:
The timing of N application to maize is a key factor to be considered in no-till oat/maize sequential cropping. This study aimed to evaluate the influence of pre-planting, planting and sidedress N application on oat residue decomposition, on soil N immobilisation and remineralisation and on N uptake by maize plants in no-till oat/maize sequential cropping. Undisturbed soil cores of 10 and 20 cm diameter were collected from the 0-15 cm layer of a no-till Red Latossol, when the oat cover crop was in the milk-grain stage. Two greenhouse experiments were conducted simultaneously. Experiment A, established in the 10 cm diameter cores and without plant cultivation, was used to asses N dynamics in soil and oat residues. Experiment B, established in the 20 cm diameter cores and with maize cultivation, was used to assess plant growth and N uptake. An amount of 6.0 Mg ha-1 dry matter of oat residues was spread on the surface of the cores. A rate of 90 kg N ha-1 applied as ammonium sulphate in both experiments was split in pre-planting, planting and sidedress applications as follows: (a) 00-00-00 (control), (b) 90-00-00 (pre-planting application, 20 days before planting), (c) 00-90-00 (planting application), (d) 00-30-60 (split in a planting and a sidedress application 31 days after emergence), (e) 00-00-00* (control, without oat residue) and (f) 90-00-00* (pre-planting application, without oat residue). The N concentration and N content in oat residues were not affected during decomposition by N fertilisation. Most of the fertiliser NH4+-N was converted into NO3--N within 20 days after application. A significant decrease in NO3--N contents in the 0-4 cm layer was observed in all treatments between 40 and 60 days after the oat residue placement on the soil surface, suggesting the occurrence of N immobilisation in this period. Considering that most of the inorganic N was converted into NO3- and that no immobilisation of the pre planting fertiliser N occurred at the time of its application, it was possible to conclude that pre-planting applied N was prone to losses by leaching. On the other hand, with split N applications, maize plants showed N deficiency symptoms before sidedress application. Two indications for fertiliser-N management in no-till oat/maize sequential cropping could be suggested: (a) in case of split application, the sidedress should be earlier than 30 days after emergence, and (b) if integral application is preferred to save field operations, this should be done at planting.
Resumo:
In agricultural systems the N-NH4+ and N-NO3- contents is significantly affected by soil management. This study investigated the dynamics of inorganic nitrogen (N; NH4+ and NO3-) in an experimental evaluation of soil management systems (SMSs) adopted in 1988 at the experimental station of the ABC Foundation in Ponta Grossa, in the Central South region of the State of Paraná. The objective of this study was to evaluate the changes in N-NH4+ and N-NO3- flux in the surface layer of a Red Latosol arising from SMSs over a 12-month period. The experiment was arranged in a completely randomized block design in split plots, in three replications. The plots consisted of the following SMSs: 1) conventional tillage (CT); 2) minimum tillage (MT); 3) no-tillage with chisel plow every three years (NT CH); and 4) continuous no-tillage (CNT). To evaluate the dynamics of inorganic N, the subplots represented samplings (11 sampling times, T1 - T11). The ammonium N (N-NH4+) and nitric N (N-NO3-) contents were higher in systems with reduced tillage (MT and NT CH) and without tillage (CNT) than in the CT system. In the period from October 2003 to February 2004, the N-NH4+ was higher than the N-NO3- soil content. Conversely, in the period from May 2004 to July 2004, the N-NO3- was higher than the N-NH4+ content. The greatest fluctuation in the N-NH4+ and N-NO3- contents occurred in the 0-2.5 cm layer, and the highest peak in the N-NH4+ and N-NO3- concentrations occurred after the surface application of N. Both N-NH4+ and N-NO3- were strongly correlated with the soil organic C content, which indicated that these properties vary together in the system.
Resumo:
This study assesses the importance of groundwater discharge to dissolved nutrient levels in Mangueira Lagoon. A transect of an irrigation canal in the margin of Lagoon demonstrated a strong geochemical gradient due to high groundwater inputs in this area. Using 222Rn as a quantitative groundwater tracer, we observed that the flux of dissolved inorganic nitrogen (DIN), silicate and phosphate (1178 and 1977; 26190 and 35652; 167 and 188 mol d-1 for winter and summer, respectively) can continually supply/sustain primary production. The irrigation canals act as an artificial underground tributary and represent a new source of nutrients to coastal lagoons.
Resumo:
Temporal variation of Nitella furcata (Roxburgh ex Bruzelius) C. Agardh emend. R. D. Wood subsp. mucronata (A. Braun) R. D. Wood var. mucronata f. oligospira (A. Braun) R. D. Wood biomass and chemical composition were studied at the Ninféias Pond (23°38'18.9" S, 46°37'16.3" W), a mesotrophic reservoir located in the Parque Estadual das Fontes do Ipiranga Biological Reserve, Municipality of São Paulo, Southeast Brazil. Plants were collected monthly from October 1996 to October 1997 at three fixed stations of reservoir's littoral region. Charophyte biomass spatial distribution pattern did not vary significantly throughout the study period at all sampling stations. As to seasonal variation, the highest average values of the total alga biomass (98.35-266.06 g m-2 DW) were registered during the rainy season, whereas lowest values (48.86-170.56 g m-2 DW) were in the dry season. P values varied from 23.8 to 225.2 mg m-2 and C from 139 to 353 mg m-2. During the rainy season, greatest air and water temperature, rain precipitation, turbidity and dissolved inorganic nitrogen values were measured, constituting the best conditions for charophyte growth. Water temperature and nutrient availability in the reservoir played a decisive role towards growth and accumulation of algal biomass.
Resumo:
This study aimed to evaluate the influence of airflow (0.25, 0.50 and 0.75 L.L-1.min-1) and cycle time (10.45 h, 14.25 h and 17.35 h) on a sequencing batch reactor (SBR) performance in promoting nitrification and denitrification of poultry slaughterhouse wastewater. The operational stages included feeding, aerobic and anoxic reactions, sedimentation and discharge. SBR was operated in a laboratory scale with a working volume of 4 L, keeping 25% of biomass retained inside the reactor as inoculum for the next batch. In the anoxic stage, C: N ratio was maintained between 5 and 6 by adding cassava starch wastewater. A factorial design (22) with five repetitions was designed at the central point to evaluate the influence of cycle time and airflow on total inorganic nitrogen removal (N-NH4++N-NO2-+N-NO3-) and in the whole process (nitrification and denitrification). The highest total inorganic nitrogen removal (93.3%) was observed for airflow of 0.25 L.L-1.min‑1 and a cycle time of 14.25 h. At the end of the experiment, the sludge inside the reactor was characterized by fluorescent in situ hybridization (FISH), indicating the presence of ammonia and nitrite oxidizing bacteria.
Resumo:
Metabolic rates were determined by dissolved oxigen changes in light and dark bottles, filled with river water and after input of mixed effluent concentrations. In another experiment, dissolved inorganic nutrients, chlorophyll-alpha and other physico-chemical parameters were analyzed. Water column showed higher decomposition than production rates. Waste inputs increased primary production rates, but in higher concentrations forced the system to heterotrophy. The natural richness of macrophytes and macroalgae could be limiting the phytoplanktonic production by phosphorus assimilation. Observation of the nitrogenated inorganic nutrients suggest that the natural pelagic system is directed to nitrification. Mixed waste input inverted this trend, toward denitrification.
Resumo:
Photosynthetic microorganism cultures, such as microalgae, represent one of the alternatives for fossil CO2 emissions mitigation. Carbon supply is the major cost component in microalgal cultures. Aiming to enhance the dissolved inorganic carbon uptake efficiency in microalgal cultures, Spirulina sp LEB-18 was cultivated in mediums containing NaHCO3 concentrations ranging from 2.8 to 100 g L-1. Results indicated that lower dissolved inorganic carbon concentratios (2.8 g L-1 NaHCO3) produce higher growth parameters (Xmax = 0.75 g L-1; Pmax = 0.145 g L-1 d-1; µmax = 0.254 d-1) and lower carbon losses (13.61%). At 50 g L-1 of NaHCO3 cell growth was inhibited and carbon losses reached 38.73%.
Resumo:
A sequential batch reactor with suspended biomass and useful volume of 5 L was used in the removal of nutrients and organic matter in workbench scale under optimal conditions obtained by central composite rotational design (CCRD), with cycle time (CT) of 16 h (10.15 h, aerobic phase, and 4.35 h, anoxic phase) and carbon: nitrogen ratio (COD/NO2--N+NO3--N) equal to 6. Complete cycles (20), nitrification followed by denitrification, were evaluated to investigate the kinetic behavior of degradation of organic (COD) and nitrogenated (NH4+-N, NO2--N and NO3--N) matter present in the effluent from a bird slaughterhouse and industrial processing facility, as well as to evaluate the stability of the reactor using Shewhart control charts of individual measures. The results indicate means total inorganic nitrogen (NH4+-N+NO2- -N+NO3--N) removal of 84.32±1.59% and organic matter (COD) of 53.65±8.48% in the complete process (nitrification-denitrification) with the process under statistical control. The nitrifying activity during the aerobic phase estimated from the determination of the kinetic parameters had mean K1 and K2 values of 0.00381±0.00043 min-1 and 0.00381±0.00043 min-1, respectively. The evaluation of the kinetic behavior of the conversion of nitrogen indicated a possible reduction of CT in the anoxic phase, since removals of NO2--N and NO3--N higher than 90% were obtained with only 1 h of denitrification.
Resumo:
We are using molecular, biochemical, and genetic approaches to study the structural and regulatory genes controlling the assimilation of inorganic nitrogen into the amino acids glutamine, glutamate, aspartate and asparagine. These amino acids serve as the principal nitrogen-transport amino acids in most crop and higher plants including Arabidopsis thaliana. We have begun to investigate the regulatory mechanisms controlling nitrogen assimilation into these amino acids in plants using molecular and genetic approaches in Arabidopsis. The synthesis of the amide amino acids glutamine and asparagine is subject to tight regulation in response to environmental factors such as light and to metabolic factors such as sucrose and amino acids. For instance, light induces the expression of glutamine synthetase (GLN2) and represses expression of asparagine synthetase (ASN1) genes. This reciprocal regulation of GLN2 and ASN1 genes by light is reflected at the level of transcription and at the level of glutamine and asparagine biosynthesis. Moreover, we have shown that the regulation of these genes is also reciprocally controlled by both organic nitrogen and carbon metabolites. We have recently used a reverse genetic approach to study putative components of such metabolic sensing mechanisms in plants that may be conserved in evolution. These components include an Arabidopsis homolog for a glutamate receptor gene originally found in animal systems and a plant PII gene, which is a homolog of a component of the bacterial Ntr system. Based on our observations on the biology of both structural and regulatory genes of the nitrogen assimilatory pathway, we have developed a model for metabolic control of the genes involved in the nitrogen assimilatory pathway in plants.
Resumo:
Nitrogen usually determines the productive potential of forage crops, although it is highly unstable in the environment. Studies on recovery rates and use efficiency are important for more reliable fertilizer recommendations to reduce costs and avoid environmental pollution. The purpose of this study was to evaluate N use efficiency and recovery rate of Alexandergrass pasture (Brachiaria - Syn. Urochloa plantaginea) as well as N-NO3- and N-NH4+ soil concentrations using different levels of N fertilization under two grazing intensities. The experiment was arranged in a randomized block design in a factorial scheme with three replications. Treatments consisted of three N rates (0, 200 and 400 kg ha-1 N) and two grazing intensities termed low mass (LM; forage mass of 2,000 kg ha-1 of DM) and high mass (HM; forage mass of 3,600 kg ha-1 of DM) under continuous stocking and variable stocking rates. Results of N fertilization with 200 kg ha-1 were better than with 400 kg ha-1 N. There was a significant effect of N rates on soil N-NO3-concentration with higher levels in the first layer of the soil profile in the treatment with 400 kg ha-1 N. Grazing intensity also affected soil N-NO3- concentration, by increasing the levels under the higher stocking rate (lower forage mass).
Resumo:
This study evaluated the effect of hairy vetch (Vicia villosa Roth) as cover crop on maize nutrition and yield under no tillage using isotope techniques. For this purpose, three experiments were carried out: 1) quantification of biological nitrogen fixation (BNF) in hairy vetch; 2) estimation of the N release rate from hairy vetch residues on the soil surface; 3) quantification of 15N recovery by maize from labeled hairy vetch under three rates of mineral N fertilization. This two-year field experiment was conducted on a sandy Acrisol (FAO soil classification) or Argissolo Vermelho distrófico arênico (Brazilian Soil Classification), at a mean annual temperature of 18 ºC and mean annual rainfall of 1686 mm. The experiment was arranged in a double split-plot factorial design with three replications. Two levels of hairy vetch residue (50 and 100 % of the aboveground biomass production) were distributed on the surface of the main plots (5 x 12 m). Maize in the sub-plots (5 x 4 m) was fertilized with three N rates (0, 60, and 120 kg ha-1 N), with urea as N source. The hairy vetch-derived N recovered by maize was evaluated in microplots (1.8 x 2.2 m). The BFN of hairy vetch was on average 72.4 %, which represents an annual input of 130 kg ha-1 of atmospheric N. The N release from hairy vetch residues was fast, with a release of about 90 % of total N within the first four weeks after cover crop management and soil residue application. The recovery of hairy vetch 15N by maize was low, with an average of 12.3 % at harvest. Although hairy vetch was not directly the main source of maize N nutrition, the crop yield reached 8.2 Mg ha-1, without mineral fertilization. There was an apparent synergism between hairy vetch residue application and the mineral N fertilization rate of 60 kg ha-1, confirming the benefits of the combination of organic and inorganic N sources for maize under no tillage.
Resumo:
Nitrogen is the main limiting factor in crop productivity and thereby soil management systems may change the mineralization and nitrification rates. In an experiment on soil management systems implemented in 1988 at the experimental station Fundação ABC, Ponta Grossa, in the central South region of the State of Paraná, inorganic N dynamics were examined to find a soil management strategy with a view to a sustainable environment. The objective of this study was to calculate the net mineralization and nitrification rates of soil N and the correlation with soil pH under management systems. Randomized complete block design was used, in split plots, in three replications. The following soil management systems (SMSs) were adopted in the plots: 1) conventional tillage (CT); 2) minimum tillage (MT); 3) no-tillage with chisel plow every three years (NT CH); and 4) continuous no-tillage (CNT). To evaluate the dynamics of inorganic N, samples were collected from sub-plots at different times (11 sampling times - T1 to T11). In the CNT and NT CH, the net mineralization rates were higher in the MT and CT systems in the 0-2.5 cm soil layer, while the nitrification rate was higher in the 2.5-5 cm layer. Soon after implementing the white oat management, the mineralization and nitrification rates in all soil layers were higher in the MT and CT systems. In the period of soybean development, in the 0-2.5 and 2.5-5 cm soil layers, the mineralization and nitrification rates were higher in the CNT and NT CH than in the MT and CT systems.
Resumo:
The objective of this work was to study the effects of fire on net N mineralization and soil microbial biomass in burned and unburned cerrado stricto sensu sites. The study was carried out from April 1998 to April 2000. The pH values were significantly higher in the burned site while soil moisture content was significantly higher in the unburned site (P<0.05). The soil C/N ratio was 22/1 and the available NO3-N ranged between 1.5 and 2.8 mg kg-¹ dry weight. However, the NH4-N concentration ranged between 3 and 34 mg kg-1 dry weight in the burned site and between 3 and 22 mg kg-1 dry weight in the unburned site. The NH4-N increased after fire, but no significant changes were observed for NO3-N (P<0.05). The NO3-N accumulation occurred in short periods during the rainy season. The rates of net N mineralization increased during the rainy season while reductions in soil microbial biomass were observed at both sites. This suggested that the peak in microbial activities occurred with the first rain events, with an initial net immobilization followed by net mineralization. Both sites presented the same pattern for mineralization/immobilization, however, the amount of inorganic-N cycled annually in unburned site was 14.7 kg ha-1 per year while the burned site presented only 3.8 kg ha-¹ of inorganic-N, one year after the burning.