2 resultados para Dissolved
em Scielo Saúde Pública - SP
Resumo:
The Amazon River basin is important in the contribution of dissolved material to oceans (4% worldwide). The aim of this work was to study the spatial and the temporal variability of dissolved inorganic materials in the main rivers of the Amazon basin. Data from 2003 to 2011 from six gauging stations of the ORE-HYBAM localized in Solimões, Purus, Madeira and Amazon rivers were used for this study. The concentrations of Ca2+, Na+, K+, Mg2+, Cl-, SO4 -2, HCO3 - and SiO2 were analyzed. At the stations of Solimões and Amazon rivers, the concentrations of Ca2+, Mg2+, HCO3 - and SO4 -2 had heterogeneous distribution over the years and did not show seasonality. At the stations of Madeira river, the concentration of these ions had seasonality inversely proportional to water discharge (dilution-concentration effect). Similar behavior was observed for the concentrations of Cl- and Na+ at the stations of the Solimões, Amazon and Madeira rivers, indicating almost constant release of Cl- and Na+ fluxes during the hydrological cycle. K+ and SiO2 showed almost constant concentrations throughout the years and all the stations, indicating that their flows depend on the river discharge variation. Therefore, the temporal variability of the dissolved inorganic material fluxes in the Solimões and Amazon rivers depends on the hydro-climatic factor and on the heterogeneity of the sources. In the Madeira and Purus rivers there is less influence of these factors, indicating that dissolved load fluxes are mainly associated to silicates weathering. As the Solimões basin contributes approximately 84% of the total flux of dissolved materials in the basin and is mainly under the influence of a hydro-climatic factor, we conclude that the temporal variability of this factor controls the temporal variability of the dissolved material fluxes of the Amazon basin.
Resumo:
The objective of this work was to determine the contribution of dissolved organic carbon (DOC) from a biochar mineral complex (BMC), so as to better understand the interactions between DOC, biochar, clay, and minerals during thermal treatment, and the effects of BMC on amended soils. The BMC was prepared by heating a mixture of a H3PO4-treated saligna biochar from Acacia saligna, clays, other minerals, and chicken manure. The BMC was applied to a sandy loam soil in Western Australia, where wheat was grown. Liquid chromatography-organic carbon detection (LC-OCD) tests were carried out on water extracts from the untreated biochar, the BMC, the BMC-amended soil, and on a control soil to measure the DOC concentration. LC-OCD tests provide a fingerprint of the DOC, which allows the fractions of DOC to be determined. Thermal processing enhanced the reaction of the A. saligna biochar with manure, clays and minerals, and affected the distribution of the DOC fractions. Notably, the process leads to immobilization of hydrophobic DOC and to an increase in the concentration of low-molecular-weight neutrals in the BMC. The application of the BMC to soil increases the DOC in the amended soil, especially the biopolymer fraction.