13 resultados para Directed Mutagenesis
em Scielo Saúde Pública - SP
Resumo:
Despite the presence of a family of defense proteins, Phaseolus vulgaris can be attacked by bruchid insects resulting in serious damage to stored grains. The two distinct active forms of a-amylase inhibitors, a-AI1 and a-AI2, in P. vulgaris show different specificity toward a-amylases. Zabrotes subfasciatus a-amylase is inhibited by a-AI2 but not by a-AI1. In contrast, porcine a-amylase is inhibited by a-AI1 but not by a-AI2. The objective of this work was to understand the molecular basis of the specificity of two inhibitors in P. vulgaris (a-AI1 and a-AI2) in relation to a-amylases. Mutants of a-AI2 were made and expressed in tobacco plants. The results showed that all the a-AI2 mutant inhibitors lost their activity against the insect a-amylases but none exhibited activity toward the mammalian a-amylase. The replacement of His33 of a-AI2 with the a-AI1-like sequence Ser-Tyr-Asn abolished inhibition of Z. subfasciatus a-amylase. From structural modeling, the conclusion is that the size and complexity of the amylase-inhibitor interface explain why mutation of the N-terminal loop and resultant abolition of Z. subfasciatus a-amylase inhibition are not accompanied by gain of inhibitory activity against porcine a-amylase.
Resumo:
P-selectin glycoprotein ligand-1 (PSGL-1) is a dimeric mucin-like 120-kDa glycoprotein on leukocyte surfaces that binds to P- and L-selectin and promotes cell adhesion in the inflammatory response. The extreme amino terminal extracellular domain of PSGL-1 is critical for these interactions, based on site-directed mutagenesis, blocking monoclonal antibodies, and biochemical analyses. The current hypothesis is that for high affinity interactions with P-selectin, PSGL-1 must contain O-glycans with a core-2 branched motif containing the sialyl Lewis x antigen (NeuAca2®3Galß1®4[Fuca1®3]GlcNAcß1®R). In addition, high affinity interactions require the co-expression of tyrosine sulfate on tyrosine residues near the critical O-glycan structure. This review addresses the biochemical evidence for this hypothesis and the evidence that PSGL-1 is an important in vivo ligand for cell adhesion.
Resumo:
The α-MRE is the major regulatory element responsible for the expression of human α-like globin genes. It is genetically polymorphic, and six different haplotypes, named A to F, have been identified in some population groups from Europe, Africa and Asia and in native Indians from two Brazilian Indian tribes. Most of the mutations that constitute the α-MRE haplotypes are located in flanking sequences of binding sites for nuclear factors. To our knowledge, there are no experimental studies evaluating whether such variability may influence the α-MRE enhancer activity. We analyzed and compared the expression of luciferase of nine constructs containing different α-MRE elements as enhancers. Genomic DNA samples from controls with A (wild-type α-MRE) and B haplotypes were used to generate C-F haplotypes by site-directed mutagenesis. In addition, three other elements containing only the G→A polymorphism at positions +130, +199, and +209, separately, were also tested. The different α-MRE elements were amplified and cloned into a plasmid containing the luciferase reporter gene and the SV40 promoter and used to transiently transfect K562 cells. A noticeable reduction in luciferase expression was observed with all constructs compared with the A haplotype. The greatest reductions occurred with the F haplotype (+96, C→A) and the isolated polymorphism +209, both located near the SP1 protein-binding sites believed not to be active in vivo. These are the first analyses of α-MRE polymorphisms on gene expression and demonstrate that these single nucleotide polymorphisms, although outside the binding sites for nuclear factors, are able to influence in vitro gene expression.
Resumo:
The manner by which effects of simultaneous mutations combine to change enzymatic activity is not easily predictable because these effects are not always additive in a linear manner. Hence, the characterization of the effects of simultaneous mutations of amino acid residues that bind the substrate can make a significant contribution to the understanding of the substrate specificity of enzymes. In the β-glycosidase from Spodoptera frugiperda (Sfβgly), both residues Q39 and E451 interact with the substrate and this is essential for defining substrate specificity. Double mutants of Sfβgly (A451E39, S451E39 and S451N39) were prepared by site-directed mutagenesis, expressed in bacteria and purified using affinity chromatography. These enzymes were characterized using p-nitrophenyl β-galactoside and p-nitrophenyl β-fucoside as substrates. The k cat/Km ratio for single and double mutants of Sfβgly containing site-directed mutations at positions Q39 and E451 was used to demonstrate that the effect on the free energy of ES‡ (enzyme-transition state complex) of the double mutations (∆∆G‡xy) is not the sum of the effects resulting from the single mutations (∆∆G‡x and ∆∆G‡y). This difference in ∆∆G‡ indicates that the effects of the single mutations partially overlap. Hence, this common effect counts only once in ∆∆G‡xy. Crystallographic data on β-glycosidases reveal the presence of a bidentate hydrogen bond involving residues Q39 and E451 and the same hydroxyl group of the substrate. Therefore, both thermodynamic and crystallographic data suggest that residues Q39 and E451 exert a mutual influence on their respective interactions with the substrate.
Resumo:
In the current literature, there is evidence that psychological factors can affect the incidence and progression of some cancers. Interleukin 6 (IL-6) is known to be elevated in individuals experiencing chronic stress and is also involved in oncogenesis and cancer progression. However, the precise mechanism of IL-6 induction by the stress-related hormone norepinephrine (NE) is not clear, and, furthermore, there are no reports about the effect of NE on IL-6 expression in gastric epithelial cells. In this study, we examined the effect of NE on IL-6 expression in immortalized human gastric epithelial cells (GES-1 cells). Using real-time PCR and enzyme-linked immunoassay, we demonstrated that NE can induce IL-6 mRNA and protein expression in GES-1 cells. The induction is through the β-adrenergic receptor-cAMP-protein kinase A pathway and mainly at the transcriptional level. Progressive 5′-deletions and site-directed mutagenesis of the parental construct show that, although activating-protein-1 (AP-1), cAMP-responsive element binding protein (CREB), CCAAT-enhancer binding protein-β (C/EBP-β), and nuclear factor κ-light-chain-enhancer of activated B cells (NF-κB) binding sites are all required in the basal transcription of IL-6, only AP-1 and CREB binding sites in the IL-6 promoter are required in NE-induced IL-6 expression. The results suggest that chronic stress may increase IL-6 secretion of human gastric epithelial cells, at least in part, by the stress-associated hormone norepinephrine, and provides basic data on stress and gastric cancer progression.
Resumo:
In visceral leishmaniasis, the detection of the agent is of paramount importance to identify reservoirs of infection. Here, we evaluated the diagnostic attributes of PCRs based on primers directed to cytochrome-B (cytB), cytochrome-oxidase-subunit II (coxII), cytochrome-C (cytC), and the minicircle-kDNA. Although PCRs directed to cytB, coxII, cytC were able to detect different species of Leishmania, and the nucleotide sequence of their amplicons allowed the unequivocal differentiation of species, the analytical and diagnostic sensitivity of these PCRs were much lower than the analytical and diagnostic sensitivity of the kDNA-PCR. Among the 73 seropositive animals, the asymptomatic dogs had spleen and bone marrow samples collected and tested; only two animals were positive by PCRs based on cytB, coxII, and cytC, whereas 18 were positive by the kDNA-PCR. Considering the kDNA-PCR results, six dogs had positive spleen and bone marrow samples, eight dogs had positive bone marrow results but negative results in spleen samples and, in four dogs, the reverse situation occurred. We concluded that PCRs based on cytB, coxII, and cytC can be useful tools to identify Leishmania species when used in combination with automated sequencing. The discordance between the results of the kDNA-PCR in bone marrow and spleen samples may indicate that conventional PCR lacks sensitivity for the detection of infected dogs. Thus, primers based on the kDNA should be preferred for the screening of infected dogs.
Resumo:
After treatment young Kenyan schoolchildren are highly susceptible to reinfection with Schistosoma mansoni. Older children and adults are resistant to reinfection. There is no evidence that this age related resistance is due to a slow development of protective immunological mechanisms, rather, it appears that young children are susceptible because of the presence of blocking antibodies which decline with age, thus allowing the expression of protective responses. Correlations between antibody responses to different stages of the parasite life-cycle suggest that, in young children, antigen directed, isotype restriction of the response against cross-reactive polysaccharide egg antigens results in an ineffectual, or even blocking antibody response to the schistosomulum.
Resumo:
Schistosomiasis is a major neglected tropical disease caused by trematodes from the genus Schistosoma. Because schistosomes exhibit a complex life cycle and numerous mechanisms for regulating gene expression, it is believed that spliced leader (SL) trans-splicing could play an important role in the biology of these parasites. The purpose of this study was to investigate the function of trans-splicing in Schistosoma mansoni through analysis of genes that may be regulated by this mechanism and via silencing SL-containing transcripts through RNA interference. Here, we report our analysis of SL transcript-enriched cDNA libraries from different S. mansoni life stages. Our results show that the trans-splicing mechanism is apparently not associated with specific genes, subcellular localisations or life stages. In cross-species comparisons, even though the sets of genes that are subject to SL trans-splicing regulation appear to differ between organisms, several commonly shared orthologues were observed. Knockdown of trans-spliced transcripts in sporocysts resulted in a systemic reduction of the expression levels of all tested trans-spliced transcripts; however, the only phenotypic effect observed was diminished larval size. Further studies involving the findings from this work will provide new insights into the role of trans-splicing in the biology of S. mansoni and other organisms. All Expressed Sequence Tags generated in this study were submitted to dbEST as five different libraries. The accessions for each library and for the individual sequences are as follows: (i) adult worms of mixed sexes (LIBEST_027999: JZ139310 - JZ139779), (ii) female adult worms (LIBEST_028000: JZ139780 - JZ140379), (iii) male adult worms (LIBEST_028001: JZ140380 - JZ141002), (iv) eggs (LIBEST_028002: JZ141003 - JZ141497) and (v) schistosomula (LIBEST_028003: JZ141498 - JZ141974).
Resumo:
A new Cu(II) trimers, [Cu3(dcp)2(H2O)8]. 4DMF, with the ligand 3,5-pyrazoledicarboxylic acid monohydrate (H3dcp) has been prepared by solvent method. Its solid-state structure has been characterized by elemental analysis, thermal analysis (TGA and DSC), and single crystal X-ray diffraction. X-ray crystallographic studies reveal that this complex has extended 1-D,2-D and 3-D supramolecular architectures directed by weak interactions (hydrogen bond and aromatic π-π stacking interaction) leading to a sandwich solid-state structure.
Resumo:
There is little information about the selectivity of herbicides in physic nut (Jatropha curcas) in Brazil. Therefore, this study aimed to evaluate the selectivity of different doses and mixtures of paraquat and diuron in direted-spray applications in physic nut plants in greenhouse conditions. The study used a randomized block design, with five replicates. The treatments were: paraquat (200 and 600 g ha-1), diuron (1,000 and 2,000 g ha-1), paraquat + diuron (200 + 1,000 g ha-1), paraquat + diuron (200 + 2,000 g ha-1), paraquat + diuron (600 + 1,000 g ha-1), paraquat + diuron (600 + 2,000 g ha-1) and a control (no application). Directed-spray application was performed at 70 days after sowing by the lower third of the plants. The treatments of diuron and paraquat + diuron mixtures affected the growth and photosynthetic activity of physic nut plants, injuries being more pronounced at doses of diuron of 2,000 g ha‑1, while the isolated application of paraquat at doses of 200 and 600 g ha-1 showed good selectivity potential for physic nut plants.
Resumo:
The development of in vitro propagation of cells has been an extraordinary technical advance for several biological studies. The correct identification of the cell line used, however, is crucial, as a mistaken identity or the presence of another contaminating cell may lead to invalid and/or erroneous conclusions. We report here the application of a DNA fingerprinting procedure (directed amplification of minisatellite-region DNA), developed by Heath et al. [Nucleic Acids Research (1993) 21: 5782-5785], to the characterization of cell lines. Genomic DNA of cells in culture was extracted and amplified by PCR in the presence of VNTR core sequences, and the amplicons were separated by agarose gel electrophoresis. After image capture with a digital camera, the banding profiles obtained were analyzed using a software (AnaGel) specially developed for the storage and analysis of electrophoretic fingerprints. The fingerprints are useful for construction of a data base for identification of cell lines by comparison to reference profiles as well as comparison of similar lines from different sources and periodic follow-up of cells in culture.
Resumo:
Most drugs function by binding reversibly to specific biological targets, and therapeutic effects generally require saturation of these targets. One means of decreasing required drug concentrations is incorporation of reactive metal centers that elicit irreversible modification of targets. A common approach has been the design of artificial proteases/nucleases containing metal centers capable of hydrolyzing targeted proteins or nucleic acids. However, these hydrolytic catalysts typically provide relatively low rate constants for target inactivation. Recently, various catalysts were synthesized that use oxidative mechanisms to selectively cleave/inactivate therapeutic targets, including HIV RRE RNA or angiotensin converting enzyme (ACE). These oxidative mechanisms, which typically involve reactive oxygen species (ROS), provide access to comparatively high rate constants for target inactivation. Target-binding affinity, co-reactant selectivity, reduction potential, coordination unsaturation, ROS products (metal-associated vsmetal-dissociated; hydroxyl vs superoxide), and multiple-turnover redox chemistry were studied for each catalyst, and these parameters were related to the efficiency, selectivity, and mechanism(s) of inactivation/cleavage of the corresponding target for each catalyst. Important factors for future oxidative catalyst development are 1) positioning of catalyst reduction potential and redox reactivity to match the physiological environment of use, 2) maintenance of catalyst stability by use of chelates with either high denticity or other means of stabilization, such as the square planar geometric stabilization of Ni- and Cu-ATCUN complexes, 3) optimal rate of inactivation of targets relative to the rate of generation of diffusible ROS, 4) targeting and linker domains that afford better control of catalyst orientation, and 5) general bio-availability and drug delivery requirements.