31 resultados para Dependent Conformational-changes
em Scielo Saúde Pública - SP
Resumo:
Vaccinal and wild strains of Newcastle Disease virus (NDV) were analyzed for cell receptor binding and fusogenic biological properties associated with their HN (hemagglutinin-neuraminidase) and F (fusion protein) surface structures respectively. The evaluation of the biological activities of HN and F was carried out respectively by determination of hemagglutinating titers and hemolysis percentages, using erythrocytes from various animal origins at different pH values. Significant differences in hemagglutination titers for some strains of NDV were detected, when interacting with goose, sheep, guinea-pip and human "O" group erythrocytes at neutral pH. Diversity of hemolysis percentagens was observed between different NDV strains at acid pH. These analysis were developed to evaluate particular aspects of the actual influence of the receptor specifity and pH on the receptor binding and fusogenic processes of Newcastle Disease viruses.
Resumo:
Synthetic dyes bind to proteins causing selective coprecipitation of the complexes in acid aqueous solution by a process of reversible denaturation that can be used as an alternative method for protein fractionation. The events that occur before precipitation were investigated by equilibrium dialysis using bovine trypsin and flavianic acid as a model able to cause coprecipitation. A two-step mode of interaction was found to be dependent on the incubation periods allowed for binding, with pronounced binding occurring after 42 h of incubation. The first step seems to involve hydration effects and conformational changes induced by binding of the first dye molecule, following rapid denaturation due to the binding of six additional flavianate anions to the macromolecule.
Resumo:
Mitochondria increase their outer and inner membrane permeability to solutes, protons and metabolites in response to a variety of extrinsic and intrinsic signaling events. The maintenance of cellular and intraorganelle ionic homeostasis, particularly for Ca2+, can determine cell survival or death. Mitochondrial death decision is centered on two processes: inner membrane permeabilization, such as that promoted by the mitochondrial permeability transition pore, formed across inner membranes when Ca2+ reaches a critical threshold, and mitochondrial outer membrane permeabilization, in which the pro-apoptotic proteins BID, BAX, and BAK play active roles. Membrane permeabilization leads to the release of apoptogenic proteins: cytochrome c, apoptosis-inducing factor, Smac/Diablo, HtrA2/Omi, and endonuclease G. Cytochrome c initiates the proteolytic activation of caspases, which in turn cleave hundreds of proteins to produce the morphological and biochemical changes of apoptosis. Voltage-dependent anion channel, cyclophilin D, adenine nucleotide translocase, and the pro-apoptotic proteins BID, BAX, and BAK may be part of the molecular composition of membrane pores leading to mitochondrial permeabilization, but this remains a central question to be resolved. Other transporting pores and channels, including the ceramide channel, the mitochondrial apoptosis-induced channel, as well as a non-specific outer membrane rupture may also be potential release pathways for these apoptogenic factors. In this review, we discuss the mechanistic models by which reactive oxygen species and caspases, via structural and conformational changes of membrane lipids and proteins, promote conditions for inner/outer membrane permeabilization, which may be followed by either opening of pores or a rupture of the outer mitochondrial membrane.
Resumo:
The carbohydrate-binding specificity of lectins from the seeds of Canavalia maritima and Dioclea grandiflora was studied by hapten-inhibition of haemagglutination using various sugars and sugar derivatives as inhibitors, including N-acetylneuraminic acid and N-acetylmuramic acid. Despite some discrepancies, both lectins exhibited a very similar carbohydrate-binding specificity as previously reported for other lectins from Diocleinae (tribe Phaseoleae, sub-tribe Diocleinae). Accordingly, both lectins exhibited almost identical hydropathic profiles and their three-dimensional models built up from the atomic coordinates of ConA looked very similar. However, docking experiments of glucose and mannose in their monosaccharide-binding sites, by comparison with the ConA-mannose complex used as a model, revealed conformational changes in side chains of the amino acid residues involved in the binding of monosaccharides. These results fully agree with crystallographic data showing that binding of specific ligands to ConA requires conformational chances of its monosaccharide-binding site.
Resumo:
Mutations in the rpoB locus confer conformational changes leading to defective binding of rifampin (RIF) to rpoB and consequently resistance in Mycobacterium tuberculosis. Polymerase chain reaction-single-strand conformation polymorphism (PCR-SSCP) was established as a rapid screening test for the detection of mutations in the rpoB gene, and direct sequencing has been unambiguously applied to characterize mutations. A total of 37 of Iranian isolates of M. tuberculosis, 16 sensitive and 21 resistant to RIF, were used in this study. A 193-bp region of the rpoB gene was amplified and PCR-SSCP patterns were determined by electrophoresis in 10% acrylamide gel and silver staining. Also, 21 samples of 193-bp rpoB amplicons with different PCR-SSCP patterns from RIFr and 10 from RIFs were sequenced. Seven distinguishable PCR-SSCP patterns were recognized in the 21 Iranian RIFr strains, while 15 out of 16 RIFs isolates demonstrated PCR-SSCP banding patterns similar to that of sensitive standard strain H37Rv. However one of the sensitive isolates demonstrated a different pattern. There were seen six different mutations in the amplified region of rpoB gene: codon 516(GAC/GTC), 523(GGG/GGT), 526(CAC/TAC), 531(TCG/TTG), 511(CTG/TTG), and 512(AGC/TCG). This study demonstrated the high specificity (93.8%) and sensitivity (95.2%) of PCR-SSCP method for detection of mutation in rpoB gene; 85.7% of RIFr strains showed a single mutation and 14.3% had no mutations. Three strains showed mutations caused polymorphism. Our data support the common notion that rifampin resistance genotypes are generally present mutations in codons 531 and 526, most frequently found in M. tuberculosis populations regardless of geographic origin.
Resumo:
The infrared (IR) spectra of the four distict conformers located on the multidimensional potential energy surface (PES) for the 3-phenyl-1,2,3-oxathiazolidine 2-oxide compound have been calculated using the semiempirical quantum-mechanical method PM3. The band spectra are reported and compared directly with the experimental spectrum. The IR intensities are shown to be much more sensitive to conformational changes than the vibrational frequencies and so, the theoretical analysis of the IR spectrum can be used as a tool for helping in the elucidation of the structure of heterocyclic compounds.
Resumo:
Porphyrias are a family of inherited diseases, each associated with a partial defect in one of the enzymes of the heme biosynthetic pathway. In six of the eight porphyrias described, the main clinical manifestation is skin photosensitivity brought about by the action of light on porphyrins, which are deposited in the upper epidermal layer of the skin. Porphyrins absorb light energy intensively in the UV region, and to a lesser extent in the long visible bands, resulting in transitions to excited electronic states. The excited porphyrin may react directly with biological structures (type I reactions) or with molecular oxygen, generating excited singlet oxygen (type II reactions). Besides this well-known photodynamic action of porphyrins, a novel light-independent effect of porphyrins has been described. Irradiation of enzymes in the presence of porphyrins mainly induces type I reactions, although type II reactions could also occur, further increasing the direct non-photodynamic effect of porphyrins on proteins and macromolecules. Conformational changes of protein structure are induced by porphyrins in the dark or under UV light, resulting in reduced enzyme activity and increased proteolytic susceptibility. The effect of porphyrins depends not only on their physico-chemical properties but also on the specific site on the protein on which they act. Porphyrin action alters the functionality of the enzymes of the heme biosynthetic pathway exacerbating the metabolic deficiencies in porphyrias. Light energy absorption by porphyrins results in the generation of oxygen reactive species, overcoming the protective cellular mechanisms and leading to molecular, cell and tissue damage, thus amplifying the porphyric picture.
Resumo:
Potato apyrase, a soluble ATP-diphosphohydrolase, was purified to homogeneity from several clonal varieties of Solanum tuberosum. Depending on the source of the enzyme, differences in kinetic and physicochemical properties have been described, which cannot be explained by the amino acid residues present in the active site. In order to understand the different kinetic behavior of the Pimpernel (ATPase/ADPase = 10) and Desirée (ATPase/ADPase = 1) isoenzymes, the nucleotide-binding site of these apyrases was explored using the intrinsic fluorescence of tryptophan. The intrinsic fluorescence of the two apyrases was slightly different. The maximum emission wavelengths of the Desirée and Pimpernel enzymes were 336 and 340 nm, respectively, suggesting small differences in the microenvironment of Trp residues. The Pimpernel enzyme emitted more fluorescence than the Desirée apyrase at the same concentration although both enzymes have the same number of Trp residues. The binding of the nonhydrolyzable substrate analogs decreased the fluorescence emission of both apyrases, indicating the presence of conformational changes in the neighborhood of Trp residues. Experiments with quenchers of different polarities, such as acrylamide, Cs+ and I- indicated the existence of differences in the nucleotide-binding site, as further shown by quenching experiments in the presence of nonhydrolyzable substrate analogs. Differences in the nucleotide-binding site may explain, at least in part, the kinetic differences of the Pimpernel and Desirée isoapyrases.
Resumo:
The binding of chlorpromazine (CPZ) and hemin to bovine serum albumin was studied by the fluorescence quenching technique. CPZ is a widely used anti-psychotic drug that interacts with blood components, influences bioavailability, and affects function of several biomolecules. Hemin is an important ferric residue of hemoglobin that binds within the hydrophobic region of albumin with high specificity. Quenching of the intrinsic fluorescence of bovine serum albumin (BSA) was observed by selectively exciting tryptophan residues at 290 nm. Emission spectra were recorded in the range from 300 to 450 nm for each quencher addition. Stern-Volmer graphs were plotted, and the quenching constant estimated for BSA solution titrated with hemin at 25ºC was 1.44 (± 0.05) x 10(5) M-1. Results showed that bovine albumin tryptophans are not equally accessible to CPZ, in agreement with the idea that polar or charged quenchers have more affinity for amino acid residues on the outer wall of the protein. Hemin added to albumin solution at a molar ratio of 1:1 quenched about 25% of their fluorescence. The quenching effect of CPZ on albumin-hemin solution was stronger than on pure BSA. This increase can be the result of combined conformational changes in the structure of albumin caused firstly by hemin and then by CPZ. Our results suggest that the primary binding site for hemin on bovine albumin may be located asymmetrically between the two tryptophans along the sequence formed by subdomains IB and IIA, closer to tryptophan residue 212.
Resumo:
Enveloped viruses always gain entry into the cytoplasm by fusion of their lipid envelope with a cell membrane. Some enveloped viruses fuse directly with the host cell plasma membrane after virus binding to the cell receptor. Other enveloped viruses enter the cells by the endocytic pathway, and fusion depends on the acidification of the endosomal compartment. In both cases, virus-induced membrane fusion is triggered by conformational changes in viral envelope glycoproteins. Two different classes of viral fusion proteins have been described on the basis of their molecular architecture. Several structural data permitted the elucidation of the mechanisms of membrane fusion mediated by class I and class II fusion proteins. In this article, we review a number of results obtained by our laboratory and by others that suggest that the mechanisms involved in rhabdovirus fusion are different from those used by the two well-studied classes of viral glycoproteins. We focus our discussion on the electrostatic nature of virus binding and interaction with membranes, especially through phosphatidylserine, and on the reversibility of the conformational changes of the rhabdovirus glycoprotein involved in fusion. Taken together, these data suggest the existence of a third class of fusion proteins and support the idea that new insights should emerge from studies of membrane fusion mediated by the G protein of rhabdoviruses. In particular, the elucidation of the three-dimensional structure of the G protein or even of the fusion peptide at different pH's might provide valuable information for understanding the fusion mechanism of this new class of fusion proteins.
Resumo:
Pressure-induced dissociation of a turbid solution of casein micelles was studied in situ in static and dynamic light scattering experiments. We show that at high pressure casein micelles decompose into small fragments comparable in size to casein monomers. At intermediate pressure we observe particles measuring 15 to 20 nm in diameter. The stability against pressure dissociation increased with temperature, suggesting enhanced hydrophobic contacts. The pressure transition curves are biphasic, compatible with a temperature (but not pressure)-dependent conformational equilibrium of two micelle species. Our thermodynamic model predicts an increase in structural entropy with temperature.
Resumo:
Happy emotional states have not been extensively explored in functional magnetic resonance imaging studies using autobiographic recall paradigms. We investigated the brain circuitry engaged during induction of happiness by standardized script-driven autobiographical recall in 11 healthy subjects (6 males), aged 32.4 ± 7.2 years, without physical or psychiatric disorders, selected according to their ability to vividly recall personal experiences. Blood oxygen level-dependent (BOLD) changes were recorded during auditory presentation of personal scripts of happiness, neutral content and negative emotional content (irritability). The same uniform structure was used for the cueing narratives of both emotionally salient and neutral conditions, in order to decrease the variability of findings. In the happiness relative to the neutral condition, there was an increased BOLD signal in the left dorsal prefrontal cortex and anterior insula, thalamus bilaterally, left hypothalamus, left anterior cingulate gyrus, and midportions of the left middle temporal gyrus (P < 0.05, corrected for multiple comparisons). Relative to the irritability condition, the happiness condition showed increased activity in the left insula, thalamus and hypothalamus, and in anterior and midportions of the inferior and middle temporal gyri bilaterally (P < 0.05, corrected), varying in size between 13 and 64 voxels. Findings of happiness-related increased activity in prefrontal and subcortical regions extend the results of previous functional imaging studies of autobiographical recall. The BOLD signal changes identified reflect general aspects of emotional processing, emotional control, and the processing of sensory and bodily signals associated with internally generated feelings of happiness. These results reinforce the notion that happiness induction engages a wide network of brain regions.
Effect of processing on antioxidant potential and total phenolics content in beet (Beta vulgaris L.)
Resumo:
The antioxidant capacity of beet is associated with non-nutritive constituents, such as phenolic compounds. The purpose of this research was to evaluate the effect of two different heat-processing techniques (drying and canned) on the antioxidant potential (ABTS) and phenolics content of beets. A forced air circulation dehydrator was used for the drying. Drying at high temperatures (100 + 90 °C/5.6 hours; 90 °C/6 hours) increased the antioxidant potential of the processed products while mild drying conditions decreased it (80 °C/6 hours; 100 + 70 °C/6 hours) or had no effect on it (70 °C/7 hours; 100 + 80 °C/6 hours). For the canned products, the antioxidant potential did not differ according to the pH (4.2 to 3.8) for any of the four acids tested. Some processing methods influenced the antioxidant potential of the processed products, and this was also dependent on changes in the total phenolics content.
Resumo:
Density-dependent responses are an important component of the organism life-history, and the resource allocation theory is a central concept to the life-history theory. When resource allocation varies due to environmental changes, a plant may change its morphology or physiology to cope with the new conditions, a process known as phenotypic plasticity. Our study aimed to evaluate how plant density affects Eichhornia crassipes allocation patterns. A total of 214 individuals in high and low density were collected. The density effect was observed in all plant traits examined including biomass accumulation. All traits of E. crassipes demonstrated higher values in high density conditions, except for biomass of leaves. Density exhibited a high influence on vegetative traits of E. crassipes, but did not influence allocation pattern, since a trade-off among the vegetative traits was not found. The morphological plasticity and the absence of trade-offs were discussed as strategies to overcome neighbor plants in competition situations. In high density conditions, there were clear changes in the morphology of the plants which probably allows for their survival in a highly competitive environment.
Resumo:
The hepatic, intestinal and cardiopulmonary lesions produced by Schistosoma mansoni, S. haematobium and S. japonicum in man and experimental animals often bear striking similarities but usually have distinctive features as well. These are often related to parasitologic differences. Thus S. japonicum and S. haematobium lay their eggs in clusters which elicit the formation of large composite granulomas. The worms of these two species also tend to be sedentary, remaining in a single location for prolonged periods, thus producing large focal lesions in the intestines or urinary tract. Worm pairs of these two species also are gregarious and many worm pairs are often found in a single lesion. The size of circumoval granulomas, and the degree of fibrosis, are T cell dependent. The modulation of granuloma size is largely T cell dependent in mice infected with S. mansoni but is mostly regulated by serum factors in S. japonicum infected mice. In spite of these differences in egg laying and immunoregulation both S. mansoni and S. japonicum produce Symmers' fibrosis in the chimpanzee while S. haematobium does not, despite the presence of numerous eggs in the liver.