8 resultados para DUFFY

em Scielo Saúde Pública - SP


Relevância:

20.00% 20.00%

Publicador:

Resumo:

We have compared Duffy blood group genotype distribution, as determined by polymerase chain reaction with allele-specific primers, in 68 Plasmodium vivax-infected patients and 59 non-vivax malaria controls from Rondônia, Brazil. Homozygosity for the allele Fy, which abolishes Duffy antigen expression on erythrocytes, was observed in 12% non-vivax controls but in no P. vivax patient. However, no significant association was found between Fy heterozygosity and protection against P. vivax. The Fy x allele, which has recently been associated with very weak erythrocyte expression of Duffy antigen, was not found in local P. vivax patients.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Plasmodium vivax infects human erythrocytes through a major pathway that requires interaction between an apical parasite protein, the Duffy binding protein (PvDBP) and its receptor on reticulocytes, the Duffy antigen/receptor for chemokines (DARC). The importance of the interaction between PvDBP (region II, DBPII) and DARC to P. vivax infection has motivated our malaria research group at Oswaldo Cruz Foundation (state of Minas Gerais, Brazil) to conduct a number of immunoepidemiological studies to characterise the naturally acquired immunity to PvDBP in populations living in the Amazon rainforest. In this review, we provide an update on the immunology and molecular epidemiology of PvDBP in the Brazilian Amazon - an area of markedly unstable malaria transmission - and compare it with data from other parts of Latin America, as well as Asia and Oceania.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Babesiosis is one of the most important diseases affecting livestock agriculture worldwide. Animals from the subspecies Bos taurus indicus are more resistant to babesiosis than those from Bos taurus taurus. The genera Babesia and Plasmodium are Apicomplexa hemoparasites and share features such as invasion of red blood cells (RBC). The glycoprotein Duffy is the only human erythrocyte receptor for Pasmodium vivax and a mutation which abolishes expression of this glycoprotein on erythrocyte surfaces is responsible for making the majority of people originating from the indigenous populations of West Africa resistant to P. vivax. The current work detected and quantified the Duffy antigen on Bos taurus indicus and Bos taurus taurus erythrocyte surfaces using a polyclonal antibody in order to investigate if differences in susceptibility to Babesia are due to different levels of Duffy antigen expression on the RBCs of these animals, as is known to be the case in human beings for interactions of Plasmodium vivax-Duffy antigen. ELISA tests showed that the antibody that was raised against Duffy antigens detected the presence of Duffy antigen in both subspecies and that the amount of this antigen on those erythrocyte membranes was similar. These results indicate that the greater resistance of B. taurus indicus to babesiosis cannot be explained by the absence or lower expression of Duffy antigen on RBC surfaces.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The possible relationship between erythrocyte antigens and the presence of malaria infection by P. vivax and P. falciparurn was sought in four different ethnic groups of two departments of Colombia. Malaria infection by P. falciparum was found in 91.4% of malaria infected blacks. No significant differences were found between the presence of malaria infection and ABO antigens. In the other blood groups, it was observed that groups MNSs conferred black people a greater Rr for malaria by both species of Plasmodium and that Duffy-negative blacks and indians appeared to be resistant to P. vivax infection. A predominance of P. vivax infection was observed in Katio indians while P.falciparum was predominant in Kuna indians; the reason for this finding still needs to be explored.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Almost all individuals (182) belonging to an Amazonian riverine population (Portuchuelo, RO, Brazil) were investigated for ascertaining data on epidemiological aspects of malaria. Thirteen genetic blood polymorphisms were investigated (ABO, MNSs, Rh, Kell, and Duffy systems, haptoglobins, hemoglobins, and the enzymes glucose-6-phosphate dehydrogenase, glyoxalase, phosphoglucomutase, carbonic anhydrase, red cell acid phosphatase, and esterase D). The results indicated that the Duffy system is associated with susceptibility to malaria, as observed in other endemic areas. Moreover, suggestions also arose indicating that the EsD and Rh loci may be significantly associated with resistance to malaria. If statistical type II errors and sample stratification could be ruled out, hypotheses on the existence of a causal mechanism or an unknown closely linked locus involved in susceptibility to malaria infection may explain the present findings.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In previous immuno-epidemiological studies of the naturally acquired antibody responses to merozoite surface protein-1 (MSP-1) of Plasmodium vivax, we had evidence that the responses to distinct erythrocytic stage antigens could be differentially regulated. The present study was designed to compare the antibody response to three asexual erythrocytic stage antigens vaccine candidates of P. vivax. Recombinant proteins representing the 19 kDa C-terminal region of MSP-1(PvMSP19), apical membrane antigen n-1 ectodomain (PvAMA-1), and the region II of duffy binding protein (PvDBP-RII) were compared in their ability to bind to IgG antibodies of serum samples collected from 220 individuals from the state of Pará, in the North of Brazil. During patent infection with P. vivax, the frequency of individuals with IgG antibodies to PvMSP1(19), PvAMA-1, and PvDBP-RII were 95, 72.7, and 44.5% respectively. Although the frequency of responders to PvDBP-RII was lower, this frequency increased in individuals following multiple malarial infections. Individually, the specific antibody levels did not decline significantly nine months after treatment, except to PvMSP1(19). Our results further confirm a complex regulation of the immune response to distinct blood stage antigens. The reason for that is presently unknown but it may contribute to the high risk of re-infection in individuals living in the endemic areas.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Enhanced understanding of the transmission dynamics and population genetics for Plasmodium vivax is crucial in predicting the emergence and spread of novel parasite phenotypes with major public health implications, such as new relapsing patterns, drug resistance and increased virulence. Suitable molecular markers are required for these population genetic studies. Here, we focus on two groups of molecular markers that are commonly used to analyse natural populations of P. vivax. We use markers under selective pressure, for instance, antigen-coding polymorphic genes, and markers that are not under strong natural selection, such as most minisatellite and microsatellite loci. First, we review data obtained using genes encoding for P. vivax antigens: circumsporozoite protein, merozoite surface proteins 1 and 3α, apical membrane antigen 1 and Duffy binding antigen. We next address neutral or nearly neutral molecular markers, especially microsatellite loci, providing a complete list of markers that have already been used in P. vivax populations studies. We also analyse the microsatellite loci identified in the P. vivax genome project. Finally, we discuss some practical uses for P. vivax genotyping, for example, detecting multiple-clone infections and tracking the geographic origin of isolates.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Malaria during pregnancy can be severe in non-immune women, but in areas of stable transmission, where women are semi-immune and often asymptomatic during infection, malaria is an insidious cause of disease and death for mothers and their offspring. Sequelae, such as severe anaemia and hypertension in the mother and low birth weight and infant mortality in the offspring, are often not recognised as consequences of infection. Pregnancy malaria, caused by Plasmodium falciparum, is mediated by infected erythrocytes (IEs) that bind to chondroitin sulphate A and are sequestered in the placenta. These parasites have a unique adhesion phenotype and distinct antigenicity, which indicates that novel targets may be required for development of an effective vaccine. Women become resistant to malaria as they acquire antibodies against placental IE, which leads to higher haemoglobin levels and heavier babies. Proteins exported from the placental parasites have been identified, including both variant and conserved antigens, and some of these are in preclinical development for vaccines. A vaccine that prevents P. falciparum malaria in pregnant mothers is feasible and would potentially save hundreds of thousands of lives each year.