24 resultados para DNA Double-stranded Breaks
em Scielo Saúde Pública - SP
Resumo:
The generation of reactive oxygen species (ROS) may be both beneficial to cells, performing functions in intracellular signaling and detrimental, modifying cellular biomolecules. ROS can cause DNA damage, such as base damage and strand breaks. Organisms respond to chromosome insults by activation of a complex and hierarchical DNA-damage response pathway. The extent of DNA damages determines cell fate: cell cycle arrest and DNA repair or cell death. The ATM is a central protein in the response to DNA double-strand breaks by acting as a transducer protein. Collected evidences suggest that ATM is also involved in the response to oxidative DNA damage.
Resumo:
DNA double-strand breaks (DSBs) represent a major threat to the genomic stability of eukaryotic cells. DNA repair mechanisms such as non-homologous end joining (NHEJ) are responsible for the maintenance of eukaryotic genomes. Dysfunction of one or more of the many protein complexes that function in NHEJ can lead to sensitivity to DNA damaging agents, apoptosis, genomic instability, and severe combined immunodeficiency. One protein, Pso2p, was shown to participate in the repair of DSBs induced by DNA inter-strand cross-linking (ICL) agents such as cisplatin, nitrogen mustard or photo-activated bi-functional psoralens. The molecular function of Pso2p in DNA repair is unknown, but yeast and mammalian cell line mutants for PSO2 show the same cellular responses as strains with defects in NHEJ, e.g., sensitivity to ICLs and apoptosis. The Pso2p human homologue Artemis participates in V(D)J recombination. Mutations in Artemis induce a variety of immunological deficiencies, a predisposition to lymphomas, and an increase in chromosomal aberrations. In order to better understand the role of Pso2p in the repair of DSBs generated as repair intermediates of ICLs, an in silico approach was used to characterize the catalytic domain of Pso2p, which led to identification of novel Pso2p homologues in other organisms. Moreover, we found the catalytic core of Pso2p fused to different domains. In plants, a specific ATP-dependent DNA ligase I contains the catalytic core of Pso2p, constituting a new DNA ligase family, which was named LIG6. The possible functions of Pso2p/Artemis/Lig6p in NHEJ and V(D)J recombination and in other cellular metabolic reactions are discussed.
Resumo:
Single-stranded DNA (ssDNA) is a prerequisite for electrochemical sensor-based detection of parasite DNA and other diagnostic applications. To achieve this detection, an asymmetric polymerase chain reaction method was optimised. This method facilitates amplification of ssDNA from the human lymphatic filarial parasite Wuchereria bancrofti. This procedure produced ssDNA fragments of 188 bp in a single step when primer pairs (forward and reverse) were used at a 100:1 molar ratio in the presence of double-stranded template DNA. The ssDNA thus produced was suitable for immobilisation as probe onto the surface of an Indium tin oxide electrode and hybridisation in a system for sequence-specific electrochemical detection of W. bancrofti. The hybridisation of the ssDNA probe and target ssDNA led to considerable decreases in both the anodic and the cathodic currents of the system's redox couple compared with the unhybridised DNA and could be detected via cyclic voltammetry. This method is reproducible and avoids many of the difficulties encountered by conventional methods of filarial parasite DNA detection; thus, it has potential in xenomonitoring.
Resumo:
Biscationic amidines bind in the DNA minor groove and present biological activity against a range of infectious diseases. Two new biscationic compounds (bis-α,ω-S-thioureido, amino and sulfide analogues) were synthesized in good yields and fully characterized, and their interaction with DNA was also investigated. Isothermal titration calorimetry (ITC) was used to measure the thermodynamic properties of binding interactions between DNA and these ligands. A double stranded calf thymus DNA immobilized on an electrode surface was used to study the possible DNA-interacting abilities of these compounds towards dsDNA in situ. A remarkable interaction of these compounds with DNA was demonstrated and their potential application as anticancer agents was furthered.
Resumo:
Two kinds of small extrachromosomal nucleic acid elements were found in the bovine babesias, Babesia bovis and B. bigemina. One element with an apparent size of 5.5 kilobase pairs (kbp) is a double stranded RNA related to virus like particles. Another molecule is a double stranded DNA with a molecular size of about 6.2 kbp. Southern blot comparison of restriction DNA fragments of the latter molecule, which is present in both B. bovis and B. bigemina is described.
Resumo:
The first studies about DNA electrochemistry appeared at the end of the fifties. The voltammetric techniques became important tool for the DNA conformational analysis, producing evidences about DNA double helix polimorphism. The new techniques based on electrodes modification with nucleic acid enlarged the use of the electrochemical methods on the DNA research. DNA electrochemical biosensors are able to detect specific sequences of DNA bases, becoming important alternative for the diagnosis of disease, as well as in the carcinogenic species determination. Besides, the use of DNA biosensors in the mechanism study of biological drug actions can be useful for drug design.
Resumo:
Bovine meningoencephalitis caused by BHV-5, a double-stranded DNA enveloped virus that belongs to the family Herpesviridae and subfamily Alphaherpesvirinae, is an important differential diagnosis of central nervous diseases. The aim of this study was to describe the histological changes in the central nervous system of calves experimentally infected with BHV-5 and compare these changes with the PCR and IHC results. Formalin-fixed paraffin-embedded central nervous system samples from calves previously inoculated with BHV-5 were microscopically evaluated and tested using IHC and PCR. All the animals presented with nonsuppurative meningoencephalitis. From 18 evaluated areas of each calf, 32.41% and 35.19% were positive by IHC and PCR, respectively. The telencephalon presented more accentuated lesions and positive areas in the PCR than other encephalic areas and was the best sampling area for diagnostic purposes. Positive areas in the IHC and PCR were more injured than IHC and PCR negative areas. The animal with neurological signs showed more PCR- and IHC-positive areas than the other animals.
Resumo:
Previous studies have examined the arrangement of regulatory elements along the apolipoprotein B (apoB) promoter region (-3067 to +940) and a promoter fragment extending from nucleotides -150 to +124 has been demonstrated to be essential for transcriptional activation of the apoB gene in hepatic and intestinal cells. It has also been shown that transcriptional activation of apoB requires a synergistic interaction between hepatic nuclear factor-4 (HNF-4) and CCAAT/enhancer-binding protein a (C/EBPa) transcription factors. Here, we have examined the hypothesis that HNF-4 factor binding to DNA may induce a DNA helix bend, thus facilitating the communication with a C/EBPa factor located one helix turn from this HNF-4 factor in the apoB promoter. A gel electrophoretic mobility shift assay using wild type double-stranded oligonucleotides or modified wild type duplex oligonucleotides with 10 nucleotides inserted between HNF-4 and C/EBPa factor motifs showed similar retarded complexes, indicating that HNF-4 and C/EBPa factors interact independently of the distance between binding sites. However, when only one base, a thymidine, was inserted at the -71 position of the apoB promoter, the complex shift was completely abolished. In conclusion, these results regarding the study of the mechanisms involving the interaction between HNF-4 and C/EBPa factors in the apoB promoter suggest that the perfect 5'-CCCTTTGGA-3' motif is needed in order to facilitate the interaction between the two factors.
Resumo:
The early demonstration of lung involvement in systemic lupus erythematosus (SLE) patients is a difficult but important task. In the present study we attempted to identify abnormalities in pulmonary clearance of 99mTc-DTPA in SLE, correlating their clearance data with clinical findings and disease activity. Forty-six consecutive SLE patients with and without active disease (LACC score) and 30 normal volunteers were studied. All subjects were submitted to pulmonary scintigraphy with 99mTc-DTPA to evaluate the pulmonary clearance, and to a chest X-ray, and SLE patients were submitted to tests of disease activity, spirometry, arterial blood gases and tests to assess acute-phase proteins. Pulmonary clearance was faster in SLE patients with active disease when compared to normal controls [half-life of 67.04 min (51.52-82.55 min) in active SLE versus 85.87 min (78.85-92.87 min) in controls, P<0.05] and there was a higher frequency of abnormal clearance rates in patients with active disease (11 of 26 patients, 42.3%) when compared with SLE patients without disease activity (2 of 20 patients, 10%) (P = 0.04). A significant correlation was observed between the clearance rates and cough (P<0.05), but not between the clearance rates and dyspnea symptoms or radiological findings, duration of SLE disease, antinuclear antibody titers and patterns, C-reactive protein or anti-double stranded DNA antibodies. We conclude that the pulmonary clearance of 99mTc-DTPA is increased in SLE patients with active disease.
Resumo:
The discovery of double-stranded RNA-mediated gene silencing has rapidly led to its use as a method of choice for blocking a gene, and has turned it into one of the most discussed topics in cell biology. Although still in its infancy, the field of RNA interference has already produced a vast array of results, mainly in Caenorhabditis elegans, but recently also in mammalian systems. Micro-RNAs are short hairpins of RNA capable of blocking translation, which are transcribed from genomic DNA and are implicated in several aspects from development to cell signaling. The present review discusses the main methods used for gene silencing in cell culture and animal models, including the selection of target sequences, delivery methods and strategies for a successful silencing. Expected developments are briefly discussed, ranging from reverse genetics to therapeutics. Thus, the development of the new paradigm of RNA-mediated gene silencing has produced two important advances: knowledge of a basic cellular mechanism present in the majority of eukaryotic cells and access to a potent and specific new method for gene silencing.
Resumo:
In this paper a number of anticancer agents of natural origin will be presented. Hydroxycamtothecin (HCPT) was found to produce a strong inhibitory action on a variety of animal tumors. It is also effective for treatment of patients with gastric carcinoma, liver carcinoma, tumor of head and neck or leukemia. Pharmacologic studies showed that it could depress S phase of tumor cells significantly and cause formation of cellular chromatid breaks. By means of alkaline elution and nick translation methods it has been proved that HCPT induced DNA singlo strand breaks remarkably. Homoharringyonine (hhrt) was shown to be effective against acute leukemia. Recent experiments in tumor-bearing mice inidcated that (HHRT) could diminish tumor metastasis. Using molecular hybridization technique it was demonstrated that (HHRT) decreased the content of c-myc RNA in the cytoplasm but not in the nuclei. Lycobetaine (LBT) poddrddrf dytnh inhibitory effects on a number of ascites tumors. In clinical trials it was against ovarian and gastric carcinomas. It is able to intercalate into DNA. Oxalysine (OXL) is a new antibiotic and shown to be effective against tumor metastatis. When used in combination with 5-FU, its anticancer action could be enhanced. Other natural compounds such as indirubin, ß-elemene, irisquinone, oridonine, norcantharidin and PSP have been also found to possess antitumor action.
Resumo:
Hepatitis C virus (HCV) is a major cause of liver disease throughout the world. The NS5A and E2 proteins of HCV genotype 1 were reported to inhibit the double-stranded (ds) RNA-dependent protein kinase (PKR), which is involved in the cellular antiviral response induced by interferon (IFN). The response to IFN therapy is quite different between genotypes, with response rates among patients infected with types 2 and 3 that are two-three-fold higher than in patients infected with type 1. Interestingly, a significant percentage of HCV genotype 3-infected patients do not respond to treatment at all. The aim of this paper was to analyse the sequences of fragments of the E2 and NS5A regions from 33 outpatients infected with genotype 3a, including patients that have responded (SVR) or not responded (NR) to treatment. HCV RNA was extracted and amplified with specific primers for the NS5A and E2 regions and the PCR products were then sequenced. The sequences obtained covered amino acids (aa) 636-708 in E2 and in NS5A [including the IFN sensitivity determining region (ISDR), PKR-binding domain and extended V3 region)]. In the E2 and NS5A regions, we did observe aa changes among patients, but these changes were not statistically significant between the SVR and NR groups. In conclusion, our results suggest that the ISDR domain is not predictive of treatment success in patients infected with HCV genotype 3a.
Resumo:
Alguns trabalhos têm evidenciado a existência de genótipos de soja contrastantes para qualidade fisiológica de semente. Tais diferenças existem em virtude da presença de sementes com total ou parcial impermeabilidade do tegumento à água, o que as tornam menos susceptíveis aos danos mecânicos, as adversidades climáticas e a deterioração por umidade. A característica de tegumento semi-permeável pode ser incorporada às cultivares de alta produção por meio dos programas de melhoramento. No entanto, há necessidade de caracterizar os genes ou as regiões genômicas envolvidas com esta característica. Nesse contexto, ferramentas da biologia molecular, como a técnica de cDNA-AFLP, podem auxiliar a identificação de genes relacionados a qualidade fisiológica de sementes. O objetivo desse estudo foi verificar a eficácia da técnica de cDNA-AFLP, na obtenção de fragmentos de genes diferencialmente expressos entre tegumentos de sementes de soja com permeabilidade contrastante. Sementes provenientes dos genótipos CD-202 (tegumento amarelo, permeável e susceptível a deterioração) e TP (tegumento preto, semi-permeável e resistente a deterioração) foram cultivadas em casa-de-vegetação, sob condições homogêneas. Realizou-se a coleta das sementes em diferentes estágios de desenvolvimento (25, 30, 35, 40 e 55 dias após a antese). Procedeu-se à extração do RNA total utilizando-se três métodos, sendo o reagente Pure Link Plant RNA o mais eficiente. Para obtenção do cDNA dupla fita utilizou-se o kit Double Stranded cDNA Synthesis. A partir do cDNA obtido, aplicou-se a técnica de AFLP testando-se um total de 64 combinações de primers. Foram obtidos 47 fragmentos de cDNA diferencialmente expressos entre os tegumentos de sementes dos dois genótipos, os quais poderão ter suas funções reveladas pelo sequenciamento e análise in sílico. De acordo com os resultados obtidos, a técnica de cDNA-AFLP demonstra ser uma alternativa promissora para estudos que visem à identificação de genes relacionados a qualidade de sementes.