30 resultados para DIVERGENCE TIMES
em Scielo Saúde Pública - SP
Resumo:
Based on phylogenetic analysis of 18S rRNA sequences and clade taxon composition, this paper adopts a biogeographical approach to understanding the evolutionary relationships of the human and primate infective trypanosomes, Trypanosoma cruzi, T. brucei, T. rangeli and T. cyclops. Results indicate that these parasites have divergent origins and fundamentally different patterns of evolution. T. cruzi is placed in a clade with T. rangeli and trypanosomes specific to bats and a kangaroo. The predominantly South American and Australian origins of parasites within this clade suggest an ancient southern super-continent origin for ancestral T. cruzi, possibly in marsupials. T. brucei clusters exclusively with mammalian, salivarian trypanosomes of African origin, suggesting an evolutionary history confined to Africa, while T. cyclops, from an Asian primate appears to have evolved separately and is placed in a clade with T. (Megatrypanum) species. Relating clade taxon composition to palaeogeographic evidence, the divergence of T. brucei and T. cruzi can be dated to the mid-Cretaceous, around 100 million years before present, following the separation of Africa, South America and Euramerica. Such an estimate of divergence time is considerably more recent than those of most previous studies based on molecular clock methods. Perhaps significantly, Salivarian trypanosomes appear, from these data, to be evolving several times faster than Schizotrypanum species, a factor which may have contributed to previous anomalous estimates of divergence times.
Resumo:
Backcrossing has been little used in cacao breeding, particularly due to the long time required to transfer genes and recover the genetic background of the recurrent parent. The objective of this study was to select individuals, resulting from the backcross CEPEC-42 x SIC-19, genetically related to the recurrent parent SIC-19 by using RAPD molecular markers, among those with resistance to witches' broom. Of the 31 plants that clustered with SIC-19, 18 from the replanted material remained free of the disease in the field, with good vegetative aspect and, therefore can be used for backcross to reach the desired objective.
Resumo:
Understanding the genetic variability of a species is crucial for the progress of a genetic breeding program and requires characterization and evaluation of germplasm. This study aimed to characterize and evaluate 101 tomato subsamples of the Salad group (fresh market) and two commercial controls, one of the Salad group (cv. Fanny) and another of the Santa Cruz group (cv. Santa Clara). Four experiments were conducted in a randomized block design with three replications and five plants per plot. The joint analysis of variance was performed and characteristics with significant complex interaction between control and experiment were excluded. Subsequently, the multicollinearity diagnostic test was carried out and characteristics that contributed to severe multicollinearity were excluded. The relative importance of each characteristics for genetic divergence was calculated by the Singh's method (Singh, 1981), and the less important ones were excluded according to Garcia (1998). Results showed large genetic divergence among the subsamples for morphological, agronomic and organoleptic characteristics, indicating potential for genetic improvement. The characteristics total soluble solids, mean number of good fruits per plant, endocarp thickness, mean mass of marketable fruit per plant, total acidity, mean number of unmarketable fruit per plant, internode diameter, internode length, main stem thickness and leaf width contributed little to the genetic divergence between the subsamples and may be excluded in future studies.
Resumo:
In August/1999, a group of 14 adults from the staff of a private hospital in Contagem -- Minas Gerais State, Brazil, received unintentionally a 25 times concentrated dose of the 17-DD yellow fever vaccine (Bio-Manguinhos), due to a mistake at the reconstitution step. All patients were clinically and laboratorially evaluated at days 5, 13 and 35 post vaccination. Frequency of side effects and clinical observations of this group of individuals were not different from the observed in recipients immunized with normal doses of the vaccine. At the second and third evaluation none of the subjects reported symptoms. None of the patients presented abnormalities at the physical examination at none of the time points and in all cases the blood examination was normal, except for a reduced number of platelets that was detected in one subject at the first and second evaluation and reverted to normal at third evaluation. At the first evaluation point, 8 subjects were serum negative and 6 serum positive for yellow fever at the plaque reduction neutralization test. In 5 subjects the observed titre was 10 times higher as the baseline of 2.36 Log10 mUI/ml. The samples collected at second and third evaluation (13th and 35th days) demonstrated that all subjects responded to the vaccination with the exception of one that did not present a positive result in any of the samples collected. This evaluation confirms the safety of the 17-DD yellow fever vaccine.
Resumo:
Allele frequencies at seven polymorphic loci controlling the synthesis of enzymes were analyzed in six populations of Culex pipiens L. and Cx. quinquefasciatus Say. Sampling sites were situated along a north-south line of about 2,000 km in Argentina. The predominant alleles at Mdh, Idh, Gpdh and Gpi loci presented similar frequencies in all the samples. Frequencies at the Pgm locus were similar for populations pairs sharing the same geographic area. The loci Cat and Hk-1 presented significant geographic variation. The latter showed a marked latitudinal cline, with a frequency for allele b ranging from 0.99 in the northernmost point to 0.04 in the southernmost one, a pattern that may be explained by natural selection (FST = 0.46; p < 0.0001) on heat sensitive alleles. The average value of FST (0.088) and Nm (61.12) indicated a high gene flow between adjacent populations. A high correlation was found between genetic and geographic distance (r = 0.83; p < 0.001). The highest genetic identity (IN = 0.988) corresponded to the geographically closest samples from the central area. In one of these localities Cx. quinquefasciatus was predominant and hybrid individuals were detected, while in the other, almost all the specimens were identified as Cx. pipiens. To verify the fertility between Cx. pipiens and Cx. quinquefasciatus from the northern- and southernmost populations, experimental crosses were performed. Viable egg rafts were obtained from both reciprocal crosses. Hatching ranged from 76.5 to 100%. The hybrid progenies were fertile through two subsequent generations
Resumo:
The evolutionary history and times of divergence of triatomine bug lineages are estimated from molecular clocks inferred from nucleotide sequences of the small subunit SSU (18S) and the second internal transcribed spacer (ITS-2) of the nuclear ribosomal DNA of these reduviids. The 18S rDNA molecular clock rate in Triatominae, and Prosorrhynchan Hemiptera in general, appears to be of 1.8% per 100 million years (my). The ITS-2 molecular clock rate in Triatominae is estimated to be around 0.4-1% per 1 my, indicating that ITS-2 evolves 23-55 times faster than 18S rDNA. Inferred chronological data about the evolution of Triatominae fit well with current hypotheses on their evolutionary histories, but suggest reconsideration of the current taxonomy of North American species complexes.
Resumo:
Another additional peculiarity in Leishmania will be discussed about of the amino acid divergence rate of three structural proteins: acidic ribosomal P1 and P2b proteins, and histone H3 by using multiple sequence alignment and dendrograms. These structural proteins present a high rate of divergence regarding to their homologous protein in Trypanosoma cruzi. At this regard, L. (V.) peruviana P1 and T. cruzi P1 showed 57.4% of divergence rate. Likewise, L. (V.) braziliensis histone H3 and acidic ribosomal P2 protein exhibited 31.8% and 41.7% respectively of rate of divergence in comparison with their homologous in T. cruzi.
Resumo:
Aspects related to hatching, time-lapse between presenting the blood-meal and beginning of feeding, feeding time, postfeed defecation delay, mortality, and fecundity for each stage of Meccus longipennis life-cycle were evaluated. The bugs were maintained in a dark incubator at 27 ± 1ºC and 80 ± 5% rh, were fed weekly and checked daily for ecdysis or death. The hatching rate observed for 300 eggs was 76.7% and the average time of hatching was 19.8 days. Mean time-lapse between presentation of the blood meal and the beginning of feeding was under 5 min in nymphal stages and postfeed defecation delay was under 10 min in most stages, except in fourth and fifth stages. Mean feeding time was longer than 10 min in most stages, except in fourth stage. One hundred thirty-one nymphs (N) (65.5%) completed the cycle and the average time from NI to adult was 192.6 ± 34.8 days. The average span in days for each stage was 18.1 for NI, 21.4 for NII, 29.5 for NIII, 45.5 for NIV and 55.9 for NV. The number of bloodmeals at each nymphal stage varied from 1 to 5. The mortality rate was 3.29 for NI, 6.8 for NII, 2.92 for NIII 3.76 for NIV, and 10.16 for NV nymphs. The average number of eggs laid per female in a 9-month period was 615.6. Based on our results, we conclude that M. longipennis has some biological and behavioral characteristics which influence its capacity of becoming infected and transmitting Trypanosoma cruzi to human populations in those areas of Mexico where it is currently present.
Resumo:
Paleoparasitological studies using microscopy showed that Ascarisand Trichuris trichiura are the human intestinal parasites most found in archaeological sites. However, in pre-Columbian South American archaeological sites, Ascaris is rare. In this work we standardized a molecular methodology for Ascaris diagnosis directly from ancient DNA retrieved from coprolites. Using cythochrome b gene (142 bp) target, ancient DNA sequences were retrieved from South American samples, negative by microscopy. Moreover, the methodology applied was sensitive enough to detect ancient DNA extracted from 30 Ascaris eggs from an European coprolite. These results revealed a new scenery for the paleodistribution of Ascaris in South America.
Resumo:
The sandfly Lutzomyia longipalpis s.l. is the main vector of American Visceral Leishmaniasis. L. longipalpis s.l. is a species complex but until recently the existence of cryptic sibling species among Brazilian populations was a controversial issue. A fragment of paralytic (para), a voltage dependent sodium channel gene associated with insecticide resistance and courtship song production in Drosophila, was isolated and used as a molecular marker to study the divergence between two sympatric siblings of the L. longipalpis complex from Sobral, Brazil. The results revealed para as the first single locus DNA marker presenting fixed differences between the two species in this locality. In addition, two low frequency amino-acid changes in an otherwise very conserved region of the channel were observed, raising the possibility that it might be associated with incipient resistance in this vector. To the best of our knowledge, the present study represents the first population genetics analysis of insecticide resistance genes in this important leishmaniasis vector.
Resumo:
Anopheles triannulatus s.l. is a malaria vector with a wide geographic distribution, ranging from Argentina-Nicaragua and Trinidad. Here we analysed sequences of two genes, timeless and cpr, to assess the genetic variability and divergence among three sympatric cryptic species of this complex from Salobra, central-western Brazil. The timeless gene sequences did not conclusively differentiate Anopheles halophylus and An. triannulatus species "C". However, a partial separation has been observed between these species and An. triannulatus s.s. Importantly, the analysis of the cpr gene sequences revealed fixed differences, no shared polymorphisms and considerable genetic differentiation among the three species of the An. triannulatus complex. The results confirm that An. triannulatus s.s., An. halophylus and An. triannulatus species C are distinct taxa, with the latter two likely representing a more recent speciation event.
Resumo:
In this study, we used fluorescence in situ hybridisation to determine the chromosomal location of 45S rDNA clusters in 10 species of the tribe Rhodniini (Hemiptera: Reduviidae: Triatominae). The results showed striking inter and intraspecific variability, with the location of the rDNA clusters restricted to sex chromosomes with two patterns: either on one (X chromosome) or both sex chromosomes (X and Y chromosomes). This variation occurs within a genus that has an unchanging diploid chromosome number (2n = 22, including 20 autosomes and 2 sex chromosomes) and a similar chromosome size and genomic DNA content, reflecting a genome dynamic not revealed by these chromosome traits. The rDNA variation in closely related species and the intraspecific polymorphism in Rhodnius ecuadoriensis suggested that the chromosomal position of rDNA clusters might be a useful marker to identify recently diverged species or populations. We discuss the ancestral position of ribosomal genes in the tribe Rhodniini and the possible mechanisms involved in the variation of the rDNA clusters, including the loss of rDNA loci on the Y chromosome, transposition and ectopic pairing. The last two processes involve chromosomal exchanges between both sex chromosomes, in contrast to the widely accepted idea that the achiasmatic sex chromosomes of Heteroptera do not interchange sequences.