102 resultados para D-fructose
em Scielo Saúde Pública - SP
Resumo:
In recent years, the introduction of the Green Chemistry concepts in undergraduate chemistry classes has been intensively pursued. In this regard, the two-step preparation of Epoxone (an organocatalyst developed by Shi & col.) from commercial D-fructose, through ketalization of vicinal diols followed by oxidation of a sterically congested secondary alcohol, involves important topics in Organic Chemistry and employs inexpensive and nontoxic reagents. The reactions are easy to perform and the products from both steps are readily obtained as crystalline solids after simple procedures, thus facilitating their chemical characterization.
Resumo:
Molecular modelling using semiempirical methods AM1, PM3, PM5 and, MINDO as well as the Density Functional Theory method BLYP/DZVP respectively were used to calculate the structure and vibrational spectra of d-glucose and d-fructose in their open chain, alpha-anomer and beta-anomer monohydrate forms. The calculated data show that both molecules are not linear; ground state and the number for the point-group C is equal to 1. Generally, the results indicate that there are similarities in bond lengths and vibrational modes of both molecules. It is concluded that DFT could be used to study both the structural and vibrational spectra of glucose and fructose.
Resumo:
Experiments for the investigation of dehydrogenase activity of washed cells of a strains of Br. abortus and another of Br. suis in presence of different single added substrates are reported. The activity was measured as the amount of formazan produced by the reduction of 2, 3, 5-triphenyltetrazolum chloride acting as a hydrogen ions acceptor, at pH 7.0. In a general manner the dehydrogenase activity of Br. suis was much more intense than that of Br. abortus (fig. 5). In the conditions of the experiments Br. abortus oxidized L-arabinose, D-galactose, D-glucose, glycerol, D-xylose, DL-alanine, D-fructose, and D-sorbitol. Brucella suis oxidized D-xylose, L-arabinose, D-glucose, D-galactose, DL-alanine, sodium acetate, maltose, glycine, D-fructose, and D-sorbitol. Glycerol was oxidized by Br. abortus but its oxidation by Br. suir was very slight. Sodium acetate and maltose were intensely oxidized by Br. suir but not by Br. abortus. The sites of more intense enzymatic acitivity were seen as small red colored round granules located in one pole of the cells.
Resumo:
The sugars in apple juice prove its authenticity and its sensory and nutritional properties. The aim of this study was to develop and validate a simple analytical method using high performance liquid chromatography with refractive index detection (HPLC-RI) to determinate and quantify the sugars sucrose, D-glucose, D-fructose, and D-sorbitol polyol in apple juices, as well as to analyze the juices from the Fuji suprema and Lis Gala cultivars at three ripening stages. The analytical performance parameters evaluated indicated that the method was specific for the compounds analyzed, and the linearity of the calibration curves of sugars showed high correlation coefficients (close to 1.0). The limits of detection and quantification are consistent with recommendations available in the literature for this type of matrix. Sample preparation is simple and generates small amount of residues. Over 70% of the sugars were determined in the juices of apples at the pre-ripe stage, with an increase during senescence. This method is applicable for the determination of sugars in juices and evaluation of apple ripening.
Resumo:
Insulin stimulates the tyrosine kinase activity of its receptor resulting in the tyrosine phosphorylation of pp185, which contains insulin receptor substrates IRS-1 and IRS-2. These early steps in insulin action are essential for the metabolic effects of insulin. Feeding animals a high-fructose diet results in insulin resistance. However, the exact molecular mechanism underlying this effect is unknown. In the present study, we determined the levels and phosphorylation status of the insulin receptor and pp185 (IRS-1/2) in liver and muscle of rats submitted to a high-fructose diet evaluated by immunoblotting with specific antibodies. Feeding fructose (28 days) induced a discrete insulin resistance, as demonstrated by the insulin tolerance test. Plasma glucose and serum insulin and cholesterol levels of the two groups of rats, fructose-fed and control, were similar, whereas plasma triacylglycerol concentration was significantly increased in the rats submitted to the fructose diet (P<0.05). There were no changes in insulin receptor concentration in the liver or muscle of either group. However, insulin-stimulated receptor autophosphorylation was reduced to 72 ± 4% (P<0.05) in the liver of high-fructose rats. The IRS-1 protein levels were similar in both liver and muscle of the two groups of rats. In contrast, there was a significant decrease in insulin-induced pp185 (IRS-1/2) phosphorylation, to 83 ± 5% (P<0.05) in liver and to 77 ± 4% (P<0.05) in muscle of the high-fructose rats. These data suggest that changes in the early steps of insulin signal transduction may have an important role in the insulin resistance induced by high-fructose feeding.
Resumo:
Rats fed a high-fructose diet represent an animal model for insulin resistance and hypertension. We recently showed that a high-fructose diet containing vegetable oil but a normal sodium/potassium ratio induced mild insulin resistance with decreased insulin receptor substrate-1 tyrosine phosphorylation in the liver and muscle of normal rats. In the present study, we examined the mean blood pressure, serum lipid levels and insulin sensitivity by estimating in vivo insulin activity using the 15-min intravenous insulin tolerance test (ITT, 0.5 ml of 6 µg insulin, iv) followed by calculation of the rate constant for plasma glucose disappearance (Kitt) in male Wistar-Hannover rats (110-130 g) randomly divided into four diet groups: control, 1:3 sodium/potassium ratio (R Na:K) diet (C 1:3 R Na:K); control, 1:1 sodium/potassium ratio diet (CNa 1:1 R Na:K); high-fructose, 1:3 sodium/potassium ratio diet (F 1:3 R Na:K), and high-fructose, 1:1 sodium/potassium ratio diet (FNa 1:1 R Na:K) for 28 days. The change in R Na:K for the control and high-fructose diets had no effect on insulin sensitivity measured by ITT. In contrast, the 1:1 R Na:K increased blood pressure in rats receiving the control and high-fructose diets from 117 ± 3 and 118 ± 3 mmHg to 141 ± 4 and 132 ± 4 mmHg (P<0.05), respectively. Triacylglycerol levels were higher in both groups treated with a high-fructose diet when compared to controls (C 1:3 R Na:K: 1.2 ± 0.1 mmol/l vs F 1:3 R Na:K: 2.3 ± 0.4 mmol/l and CNa 1:1 R Na:K: 1.2 ± 0.2 mmol/l vs FNa 1:1 R Na:K: 2.6 ± 0.4 mmol/l, P<0.05). These data suggest that fructose alone does not induce hyperinsulinemia or hypertension in rats fed a normal R Na:K diet, whereas an elevation of sodium in the diet may contribute to the elevated blood pressure in this animal model.
Resumo:
The objective of the present study was to identify metabolic, cardiovascular and autonomic changes induced by fructose overload administered in the drinking water of rats for 8 weeks. Female Wistar rats (200-220 g) were divided into 2 groups: control (N = 8) and fructose-fed rats (N = 5; 100 mg/L fructose in drinking water for 8 weeks). The autonomic control of heart rate was evaluated by pharmacological blockade using atropine (3 mg/kg) and propranolol (4 mg/kg). The animals were submitted to an intravenous insulin tolerance test (ITT) and to blood glucose measurement. The fructose overload induced a significant increase in body weight (~10%) and in fasting glycemia (~28%). The rate constant of glucose disappearance (KITT) during ITT was lower in fructose-fed rats (3.25 ± 0.7%/min) compared with controls (4.95 ± 0.3%/min, P < 0.05) indicating insulin resistance. The fructose-fed group presented increased arterial pressure compared to controls (122 ± 3 vs 108 ± 1 mmHg, P < 0.05) and a reduction in vagal tonus (31 ± 9 vs 55 ± 5 bpm in controls, P < 0.05). No changes in sympathetic tonus were observed. A positive correlation, tested by the Pearson correlation, was demonstrable between cardiac vagal tonus and KITT (r = 0.8, P = 0.02). These data provided new information regarding the role of parasympathetic dysfunction associated with insulin resistance in the development of early metabolic and cardiovascular alterations induced by a high fructose diet.
Resumo:
Pilosocereus aurisetus é uma espécie de cactos de importância econômica e ambiental que se encontra em risco de extinção. A propagação em áreas naturais ocorre, principalmente, de forma sexuada; entretanto, não há registro da germinação e viabilidade de sementes e morfologia pós-seminal de plântulas dessa espécie. Assim, objetivou-se avaliar a germinação de sementes e descrever a morfologia do desenvolvimento pós-seminal de plântulas de P. aurisetus. Para isso, sementes, armazenadas em condições ambientais por 19 meses, foram submetidas aos tratamentos: embebição em água por 24 horas; pré-resfriamento; imersão em solução de giberelina, nas concentrações de 250 mg L-1 e 500 mg L-1; e um tratamento controle. As sementes foram colocadas para germinar em meio de cultura MS, por 30 dias, quando se avaliou a percentagem de germinação. O delineamento estatístico foi o inteiramente casualizado, com cinco tratamentos e quatro repetições, sendo dispostas 25 sementes por parcela. A caracterização pós-seminal foi realizada por um período de 60 dias, utilizando-se microscópio binocular, com base nas Regras para Análise de Sementes. Maior percentagem da germinação de sementes ocorreu no controle, ou quando embebidas por 24 horas, sendo observados 90% e 83%, respectivamente. A morfologia do desenvolvimento pós-seminal indicou que a germinação é do tipo epígea, com hipocótilo de reserva; suas plântulas sofrem modificações na região do colo, para a emissão de raízes, e apresentam cerdas no ápice caulinar, mesmo na fase inicial da expansão cotiledonar. A diferenciação e início da formação das costelas iniciam-se aos 60 dias após a germinação, com o desenvolvimento do epicótilo.