44 resultados para Cysteine-Rich Protein 61
em Scielo Saúde Pública - SP
Resumo:
The glutamate-rich protein (GLURP) is an exoantigen expressed in all stages of the Plasmodium falciparum life cycle in humans. Anti-GLURP antibodies can inhibit parasite growth in the presence of monocytes via antibody-dependent cellular inhibition (ADCI), and a major parasite-inhibitory region has been found in the N-terminal R0 region of the protein. Herein, we describe the antiplasmodial activity of anti-GLURP antibodies present in the sera from individuals naturally exposed to malaria in a Brazilian malaria-endemic area. The anti-R0 antibodies showed a potent inhibitory effect on the growth of P. falciparum in vitro, both in the presence (ADCI) and absence (GI) of monocytes. The inhibitory effect on parasite growth was comparable to the effect of IgGs purified from pooled sera from hyperimmune African individuals. Interestingly, in the ADCI test, higher levels of tumour necrosis factor alpha (TNF-α) were observed in the supernatant from cultures with higher parasitemias. Our data suggest that the antibody response induced by GLURP-R0 in naturally exposed individuals may have an important role in controlling parasitemia because these antibodies are able to inhibit the in vitro growth of P. falciparum with or without the cooperation from monocytes. Our results also indicate that TNF-α may not be relevant for the inhibitory effect on P. falciparum in vitro growth.
Resumo:
The genetic diversity displayed by Plasmodium falciparum, the most deadly Plasmodium species, is a significant obstacle for effective malaria vaccine development. In this study, we identified genetic polymorphisms in P. falciparum glutamate-rich protein (GLURP), which is currently being tested in clinical trials as a malaria vaccine candidate, from isolates found circulating in the Brazilian Amazon at variable transmission levels. The study was performed using samples collected in 1993 and 2008 from rural villages situated near Porto Velho, in the state of Rondônia. DNA was extracted from 126 P. falciparum-positive thick blood smears using the phenol-chloroform method and subjected to a nested polymerase chain reaction protocol with specific primers against two immunodominant regions of GLURP, R0 and R2. Only one R0 fragment and four variants of the R2 fragment were detected. No differences were observed between the two time points with regard to the frequencies of the fragment variants. Mixed infections were uncommon. Our results demonstrate conservation of GLURP-R0 and limited polymorphic variation of GLURP-R2 in P. falciparum isolates from individuals living in Porto Velho. This is an important finding, as genetic polymorphisms in B and T-cell epitopes could have implications for the immunological properties of the antigen.
Resumo:
We describe here the isolation and characterization of a major albumin from the seeds of Cereus jamacaru (Cactaceae), to which we gave the trivial name of cactin. This protein has a molecular mass of 11.3 kDa and is formed by a light chain (3.67 kDa) and a heavy chain (7.63 kDa). This protein was isolated using a combination of gel filtration chromatography and reverse-phase HPLC. The amino acid composition of cactin was determined and found to resemble that of the 2S seed reserve protein from the Brazil nut, a protein remarkable for its high methionine content. The usefulness of cactin as a molecular marker in the taxonomy of the Cactaceae is discussed.
Resumo:
Reversion-inducing cysteine-rich protein with kazal motifs (RECK), a novel tumor suppressor gene that negatively regulates matrix metalloproteinases (MMPs), is expressed in various normal human tissues but downregulated in several types of human tumors. The molecular mechanism for this downregulation and its biological significance in salivary adenoid cystic carcinoma (SACC) are unclear. In the present study, we investigated the effects of a DNA methyltransferase (DNMT) inhibitor, 5-aza-2′deoxycytidine (5-aza-dC), on the methylation status of the RECK gene and tumor invasion in SACC cell lines. Methylation-specific PCR (MSP), Western blot analysis, and quantitative real-time PCR were used to investigate the methylation status of the RECK gene and expression of RECK mRNA and protein in SACC cell lines. The invasive ability of SACC cells was examined by the Transwell migration assay. Promoter methylation was only found in the ACC-M cell line. Treatment of ACC-M cells with 5-aza-dC partially reversed the hypermethylation status of the RECK gene and significantly enhanced the expression of mRNA and protein, and 5-aza-dC significantly suppressed ACC-M cell invasive ability. Our findings showed that 5-aza-dC inhibited cancer cell invasion through the reversal of RECKgene hypermethylation, which might be a promising chemotherapy approach in SACC treatment.
Resumo:
The oocyst wall of coccidian parasites is a robust structure that is resistant to a variety of environmental and chemical insults. This resilience allows oocysts to survive for long periods, facilitating transmission from host to host. The wall is bilayered and is formed by the sequential release of the contents of two specialized organelles - wall forming body 1 and wall forming body 2 - found in the macrogametocyte stage of Coccidia. The oocyst wall is over 90% protein but few of these proteins have been studied. One group is cysteine-rich and may be presumed to crosslink via disulphide bridges, though this is yet to be investigated. Another group of wall proteins is rich in tyrosine. These proteins, which range in size from 8-31 kDa, are derived from larger precursors of 56 and 82 kDa found in the wall forming bodies. Proteases may catalyze processing of the precursors into tyrosine-rich peptides, which are then oxidatively crosslinked in a reaction catalyzed by peroxidases. In support of this hypothesis, the oocyst wall has high levels of dityrosine bonds. These dityrosine crosslinked proteins may provide a structural matrix for assembly of the oocyst wall and contribute to its resilience.
Resumo:
The present study was carried out to evaluate the Malar-CheckTM Pf test, an immunochromatographic assay that detects Plasmodium falciparum Histidine Rich Protein II, does not require equipment, and is easy and rapid to perform. In dilution assays performed to test sensitivity against known parasite density, Malar-CheckTMwere compared with thick blood smear (TBS), the gold standard for diagnosis. Palo Alto isolate or P. falciparum blood from patients with different parasitemias was used. The average cut-off points for each technique in three independent experiments were 12 and 71 parasites/mm³ (TBS and Malar-CheckTM, respectively). In the field assays, samples were collected from patients with fever who visited endemic regions. Compared to TBS, Malar-CheckTMyielded true-positive results in 38 patients, false-positive results in 3, true-negative results in 23, and false-negative result in 1. Malar-CheckTMperformed with samples from falciparum-infected patients after treatment showed persistence of antigen up to 30 days. Malar-CheckTM should aid the diagnosis of P. falciparum in remote areas and improve routine diagnosis even when microscopy is available. Previous P. falciparum infection, which can determine a false-positive test in cured individuals, should be considered. The prompt results obtained with the Malar-CheckTM for early diagnosis could avoid disease evolution to severe cases.
Resumo:
Introduction: We evaluated the in vitro antimalarial activity of tigecycline as an alternative drug for the treatment of severe malaria. Methods: A chloroquine-sensitive Plasmodium falciparum reference strain, a chloroquine-resistant reference strain, and three clinical isolates were tested for in vitro susceptibility to tigecycline. A histidine-rich protein in vitro assay was used to evaluate antimalarial activity. Results: The geometric-mean 50% effective concentration (EC50%) of tigecycline was 535.5 nM (confidence interval (CI): 344.3-726.8). No significant correlation was found between the EC50% of tigecycline and that of any other tested antimalarial drug. Conclusions: Tigecycline may represent an alternative drug for the treatment of patients with severe malaria.
Resumo:
The genus Aotus spp. (owl monkey) is one of the WHO recommended experimental models for Plasmodium falciparum blood stage infection, especially relevant for vaccination studies with asexual blood stage antigens of this parasite. For several immunization trials with purified recombinant merozoite/schizont antigens, the susceptible Aouts kenotypes II, III, IV and VI were immunized with Escherichia coli derived fusion proteins containg partial sequences of the proteins MSAI (merozoite surface antigen I), SERP (serine-strech protein) and HRPII (histidine alanine rich protein II) as well as with a group of recombinant antigens obtained by an antiserum raised against a protective 41 kD protein band. The subcutaneous application (3x) of the antigen preparations was carried out in intact animals followed by splenectomy prior to challange, in order to increase the susceptibility of the experimental hosts to the parasite. A partial sequence of HRPII, the combination of three different fusion proteins of the 41 kD group and mixture of two sequences of SERP in the presence of the modified Al(OH)3 adjuvant conferred significant protection against a challange infection with P. falciparum blood stages (2-5 x 10 (elevado a sexta potência) i. RBC). Monkey immunized with the MS2-fusion protein carrying the N-terminal part of the 195 kD precursor of the major merozoite surface antigens induced only marginal protection showing some correlation between antibody titer and degree of parasitaemia. Based on the protective capacity of these recombinant antigens we have expressed two hybrid proteins (MS2/SERP/HRPII and SERP/MSAI/HRPII) in E. coli containing selected partial sequences of SERP, HRPII and MSAI. Antibodies raised against both hybrid proteins in rabbits and Aotus monkeys recognize the corresponding schizont polypeptides. In two independent immunization trials using 13 animals (age 7 months to 3 years) we could show that immunization of Aotus monkeys with either of the two hybrid proteins administered in an oil-based well tolerated formulation protected the animals frm a severe experimental P. falciparum (strain Palo Alto) infection.
Resumo:
Metalloproteinases are abundant enzymes in crotaline and viperine snake venoms. They are relevant in the pathophysiology of envenomation, being responsible for local and systemic hemorrhage frequently observed in the victims. Snake venom metalloproteinases (SVMP) are zinc-dependent enzymes of varying molecular weights having multidomain organization. Some SVMP comprise only the proteinase domain, whereas others also contain a disintegrin-like domain, cysteine-rich, and lectin domains. They have strong structural similarities with both mammalian matrix metalloproteinases (MMP) and members of ADAMs (a disintegrin and metalloproteinase) group. Besides hemorrhage, snake venom metalloproteinase induce local myonecrosis, skin damage, and inflammatory reaction in experimental models. Local inflammation is an important characteristic of snakebite envenomations inflicted by viperine and crotaline snake species. Thus, in the recent years there is a growing effort to understand the mechanisms responsible for SVMP-induced inflammatory reaction and the structural determinants of this effect. This short review focuses the inflammatory effects evoked by SVMP.
Resumo:
Antibody responses directed against the Plasmodium falciparum antigens, total extract, anti-merozoite surface protein-3 (MSP3b) and glutamate-rich protein (Glurp-R0) were studied in 42 children exposed to both Schistosoma haematobium and P. falciparum infections. The association between levels of the anti-malaria IgG subclasses and IgM with host age, sex, schistosome infection intensity and schistosome specific antibodies was studied before chemotherapeutic treatment of schistosome infections. This showed a significant negative association between schistosome infection intensity and levels of IgG1, IgG3, and IgG4 directed against malaria total extract antigen, and a positive association between levels of anti-schistosome soluble egg antigen IgG2, IgG3, and IgG4 and levels of the same subclasses directed against malaria total extract antigens. The effect of treating schistosome infections with praziquantel on malaria specific responses was also studied. This treatment resulted in increases in significant IgG4 levels against MSP3b and IgM against Glurp R0. Treatment also resulted in a significant decrease in IgG4 levels against Glurp R0. Host age, sex or pre-treatment infection intensity was not associated with the magnitude of change in the two IgG4 responses while males showed a significantly higher increase in levels of IgM. The results suggest cross reactivity between schistosome and malaria antigens in this population.
Resumo:
Uptake of transferrin by epimastigote forms of the protozoan Trypanosoma cruzi occurs mainly through a cytostome/ cytopharynx, via uncoated endocytic vesicles that bud off from the bottom of the cytopharynx. We have here examined whether detergent-resistant membrane (DRM) domains might be involved in this process. Purified whole cell membrane fractions were assayed for cholesterol levels and used in dot blot analyses. Detergent-resistant membrane markers (cholera B toxin and anti-flotillin-1 antibody) presented positive reaction by dot blots in cholesterol-rich/ protein-poor membrane sub-fractions. The positive dot blot fraction was submitted to lipid composition analysis, showing composition similar to that of raft fractions described for other eukaryotic cells. Immunofluorescence assays allowed the localization of punctual positive signal for flotillin-1, matching the precise cytostome/ cytopharynx location. These data were confirmed by immunofluorescence assays with the co-localization of flotillin-1 and the transferrin uptake site. Our data suggest that DRM domains occur and are integrated at the cytostome/ cytopharynx of T. cruzi epimastigotes, being the main route for transferrin uptake.
Resumo:
Drug resistance is one of the principal obstacles blocking worldwide malaria control. In Colombia, malaria remains a major public health concern and drug-resistant parasites have been reported. In vitro drug susceptibility assays are a useful tool for monitoring the emergence and spread of drug-resistant Plasmodium falciparum. The present study was conducted as a proof of concept for an antimalarial drug resistance surveillance network based on in vitro susceptibility testing in Colombia. Sentinel laboratories were set up in three malaria endemic areas. The enzyme linked immunosorbent assay-histidine rich protein 2 and schizont maturation methods were used to assess the susceptibility of fresh P. falciparum isolates to six antimalarial drugs. This study demonstrates that an antimalarial drug resistance surveillance network based on in vitro methods is feasible in the field with the participation of a research institute, local health institutions and universities. It could also serve as a model for a regional surveillance network. Preliminary susceptibility results showed widespread chloroquine resistance, which was consistent with previous reports for the Pacific region. However, high susceptibility to dihydroartemisinin and lumefantrine compounds, currently used for treatment in the country, was also reported. The implementation process identified critical points and opportunities for the improvement of network sustainability strategies.
Resumo:
Metalloproteinases and disintegrins are important components of most viperid and crotalid venoms. Large metalloproteinases referred to as MDC enzymes are composed of an N-terminal Metalloproteinase domain, a Disintegrin-like domain and a Cys-rich C-terminus. In contrast, disintegrins are small non-enzymatic RGD-containing cysteine-rich polypeptides. However, the disintegrin region of MDC enzymes bears a high degree of structural homology to that of the disintegrins, although it lacks the RGD motif. Despite these differences, both components share the property of being able to recognize integrin cell surface receptors and thereby to inhibit integrin-dependent cell reactions. Recently, several membrane-bound MDC enzymes, closely related to soluble venom MDC enzymes, have been described in mammalian cells. This group of membrane-anchored mammalian enzymes is also called the ADAM family of proteins due to the structure revealing A Disintegrin And Metalloproteinase domains. ADAMs are involved in the shedding of molecules from the cell surface, a property which is also shared by some venom MDC enzymes.
Resumo:
In order to identify genes expressed in the pistil that may have a role in the reproduction process, we have established an expressed sequence tags project to randomly sequence clones from a Nicotiana tabacum stigma/style cDNA library. A cDNA clone (MTL-8) showing high sequence similarity to genes encoding glycine-rich RNA-binding proteins was chosen for further characterization. Based on the extensive identity of MTL-8 to the RGP-1a sequence of N. sylvestris, a primer was defined to extend the 5' sequence of MTL-8 by RT-PCR from stigma/style RNAs. The amplification product was sequenced and it was confirmed that MTL-8 corresponds to an mRNA encoding a glycine-rich RNA-binding protein. Two transcripts of different sizes and expression patterns were identified when the MTL-8 cDNA insert was used as a probe in RNA blots. The largest is 1,100 nucleotides (nt) long and markedly predominant in ovaries. The smaller transcript, with 600 nt, is ubiquitous to the vegetative and reproductive organs analyzed (roots, stems, leaves, sepals, petals, stamens, stigmas/styles and ovaries). Plants submitted to stress (wounding, virus infection and ethylene treatment) presented an increased level of the 600-nt transcript in leaves, especially after tobacco necrosis virus infection. In contrast, the level of the 1,100-nt transcript seems to be unaffected by the stress conditions tested. Results of Southern blot experiments have suggested that MTL-8 is present in one or two copies in the tobacco genome. Our results suggest that the shorter transcript is related to stress while the larger one is a flower predominant and nonstress-inducible messenger.