41 resultados para Cyclic Cystine-knot
em Scielo Saúde Pública - SP
Resumo:
Natural peptides are outstanding as the most promising macromolecules in the search for new drugs, especially those of cyclic nature. The higher plants revealed a very peculiar composition of their cyclic peptides, which distinguish themselves by a "head-to-tail" cyclization. It is possible to define two groups of cyclic peptides from plant biomass. Those called in this review as Eucyclopeptides formed by 2-12 amino acid, and Cyclotides considered as circular polypeptides, composed of 29-37 amino acid that retain three disulfides bridges in an arrangement known as cyclic cystine knot. Searching for plant peptides should form into a subject for scientific research in the forefront of great importance for bioprospecting natural products macromolecular.
Resumo:
A particular event concerning a Swan-Ganz catheter complication is reported. A 41-year-old woman was admitted at the emergency room of our hospital with massive gastrointestinal bleeding. A total gastrectomy was performed. During the postoperative period in the intensive care unit , the patient maintained hemodynamic instability. Invasive hemodynamic monitoring with a pulmonary artery catheter was then indicated. During the maneuvers to insert the catheter, a true knot formation was identified at the level of the superior vena cava. Several maneuvers by radiological endovascular invasive techniques allowed removal of the catheter. The authors describe the details of this procedure and provide comments regarding the various techniques that were employed in overcoming this event. A comprehensive review of evidence regarding the benefits and risks of pulmonary artery catheterization was performed. The consensus statement regarding the indications, utilization, and management of the pulmonary artery catheterization that were issued by a consensus conference held in 1996 are also discussed in detail.
Resumo:
Root-knot nematodes were found attacking Coffea spp. and also roots of a few weed species usually found in the coffee orchards in São Paulo. C. arabica cv. Catuaí, C. arabica cv. Mundo Novo, Timor Hybrid and a few plants of C. racemosa showed to be susceptible to Meloidogyne exigua. Roots of Ageratum conyzoides, Amaranthus viridis, Bidens pilosa, Coffea arabica cv. Mundo Novo, Coffea racemosa, Commelina virginica, Digitaria sanguinalis, Galinsoga parviflora, Gnaphalium spathulatum, Porophyllum ruderale, Portulaca oleracea, Pterocaulon virgatum and Solanum americanum were disfigured by M. incognita M. arenaria was found attacking roots of Eleusine indica and Gnaphalium spathulatum, and the presence of an unidentified Meloidogyne species was verified in roots of the following species: Vernonia ferruginea, C. arabica x C. canephora, Eupatorium pauciflorum, Coffea canephora cv. Kouillou, Coffea eugenioides, Coffea racemosa, Coffea stenophylla, Euphorbia pilullifera, Solanum americanum, Ageratum conyzoides, Phyllanthus corcovadensis, and Emilia sagittata.
Resumo:
Development of Rhodnius prolixus after eclosion until the adult stage was studied at constant temperatures (T), 15, 20, 25, 28, 35°C, and relative humidities (RH), 75, 86 and 97%, and fluctuating (16/8 hr) temperatures, T I/II, 15/28°C, 20/25°C, 25/28°C and 25/35°C, and relative humidities, RH I/II, 86/75% and 97/75%. Eclosion or molting were not observed at 15°C and 86 or 97% RH, respectively. At 35°C and 75% RH only few insects molted. By alternating T I/II, 15/28°C and 25/35°C, insects developed at high frequency. Cumulating the average lengths of the interphases within independent groups for each instar, R. prolixus reached the adult stage most rapidly (86.7 days) and at highest frequency per instar (mean: 91.8%) at 28°C and 75% RH. Under fluctuating T I/II, development was completed within 100 days or less at 25/28°C and 25/35°C with high rates of hatch and molting. Development was slowest at fluctuating TI/II, 15/28°C and 20/25°C (>185 days), and at constant 20°C (>300 days). Mortality was higher at constant 97% RH or fluctuating RH I, 97%, than at constant or fluctuating 86% RH. Refeeding was minimal at optimal conditions of T and RH for development. The most refeeding was observed at a constant 35°C.
Resumo:
Although there are some data concerning the nitric oxide and the cyclic 3'-5'guanosine monophosphate (cGMP) signaling pathway in trypanosomatids, there is no report about the cGMP-dependent enzymatic activity identification. In this sense, a cGMP dependent activity was detected on soluble fraction from Leishmania amazonensis promastigotes with a high metacyclic level. This information is valuable in order to explore the metabolic pathway of G kinase protein in this parasite.
Resumo:
The objective of this work was to determine differences in leaf mineral composition between ungrafted and grafted onto (Solanum torvum) eggplant (Solanum melongena), cultivars 'Faselis' and 'Pala', grown in a soil infested with Verticillium dahliae and Meloidogyne incognita, or in a noninfested soil. Grafting increased leaf P and Mn concentrations, and decreased N concentrations, in both soils. Grafting also enhanced leaf Ca concentration of 'Pala', but it did not affect that of 'Faselis' depending on the cropping year. Leaf Mg concentration of grafted plants in infested soil was lower than that of ungrafted ones in noninfested soil. Results showed that, under the same fertilization program, the grafted 'Faselis' plants used the nutrients more efficiently than the 'Pala' ones. Use of S. torvum as a rootstock for 'Faselis' resulted in an effective protection against multiple pathogen infestation. Fertilization may be necessary when grafted 'Faselis' plants are grown in a soil infested with the pathogens, since grafting and infestation generally decrease leaf N, Mg, Ca and Fe concentrations, either by reducing the nutrient concentrations directly or by increasing leaf Mn concentration.
Resumo:
The stereoselective addition of the titanium (IV) enolates derived from (S)-4-isopropyl-N-4-chlorobutyryl-1,3-thiazolidine-2-thione (8) and from (S)-4-isopropyl-N-4-chloropentanoyl-1,3-thiazolidine-2-thione (9) to N-Boc-2-methoxypyrrolidine (5b) afforded the addition products (+)-10 and (+)-11 in 84% yield in both cases, as 8.6:1 and 10:1 diastereoisomeric mixtures, respectively. A three-step sequence allowed to convert these adducts to (+)-isoretronecanol (1) and (+)-5-epi-tashiromine (2) in 43% and 49% overall yield, respectively.
Resumo:
Aqueous extracts of several plant species have shown promising in controlling root-knot nematode, Meloidogyne incognita (Kofoid & White), one of the most limiting agents for carrot cultivation. The current study evaluated the effect of aqueous extracts from seven botanical species applied to 40, 50, 60, 70 and 80 days after sowing 'Nantes' carrots in soil infested with root-knot nematode. Three other treatments included cassava wastewater, distilled water (control), which were applied in the same periods of the extracts application, in addition to carbofuran 50G (80Kg/ha), which was applied once at 60 days after carrot sowing. Evaluations were performed at 90 days after inoculation to determine shoot and root fresh weight, as well as the diameter and the length of principal roots and the number of galls on primary and secondary roots. Plants treated with cassava wastewater, extracts of Ricinus communis L. seeds, Crotalaria juncea L. seeds, R. communis leaves + branches + fruits, Chenopodium ambrosioides L. leaves + branches + inflorescences and Azadirachta indica A. Juss. seeds showed the highest rates of total weight (root + shoot) and shoot weight. The extract of R. communis leaves + branches + fruits provides the highest total root weight and principal root diameter. Cassava wastewater and extracts of R. communis seeds provided the highest principal root weight. The extract of R. communis seeds and cassava wastewater can be considered promising for the alternative control of M. incognita.
Resumo:
Corpus luteum is a temporary endocrine gland that regulates either the estrous cycle and pregnancy. It presents extreme dependency on the adequate blood supply. This work aims to evaluate goat corpus luteum (CL) vascular density (VD) over the estrous cycle. For that purpose, 20 females were submitted to estrus synchronization/ovulation treatment using a medroxyprogesterone intra-vaginal sponge as well as intramuscular (IM) application of cloprostenol and equine chorionic gonadotrophine (eCG). After sponge removal, estrus was identified at about 72hs. Once treatment was over, female goats were then subdivided into 4 groups (n=5 each) and slaughtered on days 2, 12, 16 and 22 after ovulation (p.o). Ovaries were collected, withdrawn and weighted. CL and ovaries had size and area recorded. Blood samples were collected and the plasma progesterone (P4) was measured through RIA commercial kits. The VD was 24.42±6.66, 36.26±5.61, 8.59±2.2 and 3.97±1.12 vessels/mm² for days 2, 12, 16 and 22 p.o, respectively. Progesterone plasma concentrations were 0.49±0.08, 2.63±0.66, 0.61±0.14 and 0.22±0.04ng/ml for days 2, 12, 16 e 22 p.o, respectively. Studied parameters were affected by the estrous cycle phase. Values greater than 12 p.o were observed. In the present work we observed that ovulation occurred predominantly in the right ovary (70% of the animals), which in turn presented bigger measures than the contra lateral one. There is a meaningful relationship between the weight and size of the ovary and these of CL (r=0.87, r=0.70, respectively, p<0.05). It is possible to conclude that morphology of goat's ovaries and plasma progesterone concentration changed according to estrous cycle stages. We propose these parameters can be used as indicators of CL functional activity.
Resumo:
The irrigated rice production can be limited by various phytopathogenic agents, including root-knot nematodes (Meloidogyne spp.). Thus, the aim of this research was to check the host suitability of plant species most often found off-season and during rice cultivation, to root-knot nematode Meloidogyne graminicola, under two irrigation managements. Two experiments were conducted in a completely randomized design. In the first experiment seven plant species that occur in an area of rice cultivation, in fallow, off-season were evaluated. For the second experiment nine weed species infesting the irrigated rice culture were tested in rainfed and flooding conditions. The sixteen species, kept individually in pots with sterilized substrate, were inoculated with 5,000 eggs and second stage juveniles (J2) of nematode. BRS 410 IRGA rice plants inoculated with M.graminicola were used as control. Two months after inoculation, the root system of each plant was evaluated for number of galls and nematode reproduction factor. It was verified that the species of off-season of rice cultivation Sida rhombifolia, Raphanus raphanistrum, Spergula arvensis, Lotus corniculatus and Trifolium repens, and, during the cycle of rice cultivation, Aeschynomene denticulata, Leersia hexandra, are immune to nematode. The plant species off-season, Avena strigosa and Lolium multiflorum and of cultivation, Alternanthera philoxeroides, red rice, Echinochloa crusgalli, Cyperus difformis, Cyperus esculentus, Cyperus iria and Fimbristylis miliacea would behave as hosts of M.graminicola, mostly under rainfed conditions.
Resumo:
During the past two decades, nitric oxide signaling has been one of the most rapidly growing areas in biology. This simple free radical gas can regulate an ever growing list of biological processes. In most instances nitric oxide mediates its biological effects by activating guanylyl cyclase and increasing cyclic GMP synthesis. However, the identification of effects of nitric oxide that are independent of cyclic GMP is also growing at a rapid rate. The effects of nitric oxide can mediate important physiological regulatory events in cell regulation, cell-cell communication and signaling. Nitric oxide can function as an intracellular messenger, neurotransmitter and hormone. However, as with any messenger molecule, there can be too much or too little of the substance and pathological events ensue. Methods to regulate either nitric oxide formation, metabolism or function have been used therapeutically for more than a century as with nitroglycerin therapy. Current and future research should permit the development of an expanded therapeutic armamentarium for the physician to manage effectively a number of important disorders. These expectations have undoubtedly fueled the vast research interests in this simple molecule.
Resumo:
Guanylate cyclases (GC) serve in two different signaling pathways involving cytosolic and membrane enzymes. Membrane GCs are receptors for guanylin and atriopeptin peptides, two families of cGMP-regulating peptides. Three subclasses of guanylin peptides contain one intramolecular disulfide (lymphoguanylin), two disulfides (guanylin and uroguanylin) and three disulfides (E. coli stable toxin, ST). The peptides activate membrane receptor-GCs and regulate intestinal Cl- and HCO3- secretion via cGMP in target enterocytes. Uroguanylin and ST also elicit diuretic and natriuretic responses in the kidney. GC-C is an intestinal receptor-GC for guanylin and uroguanylin, but GC-C may not be involved in renal cGMP pathways. A novel receptor-GC expressed in the opossum kidney (OK-GC) has been identified by molecular cloning. OK-GC cDNAs encode receptor-GCs in renal tubules that are activated by guanylins. Lymphoguanylin is highly expressed in the kidney and heart where it may influence cGMP pathways. Guanylin and uroguanylin are highly expressed in intestinal mucosa to regulate intestinal salt and water transport via paracrine actions on GC-C. Uroguanylin and guanylin are also secreted from intestinal mucosa into plasma where uroguanylin serves as an intestinal natriuretic hormone to influence body Na+ homeostasis by endocrine mechanisms. Thus, guanylin peptides control salt and water transport in the kidney and intestine mediated by cGMP via membrane receptors with intrinsic guanylate cyclase activity.
Resumo:
Natural cell death is a well-known degenerative phenomenon occurring during development of the nervous system. The role of trophic molecules produced by target and afferent cells as well as by glial cells has been extensively demonstrated. Literature data demonstrate that cAMP can modulate the survival of neuronal cells. Cultures of mixed retinal cells were treated with forskolin (an activator of the enzyme adenylyl cyclase) for 48 h. The results show that 50 µM forskolin induced a two-fold increase in the survival of retinal ganglion cells (RGCs) in the absence of exogenous trophic factors. This effect was dose dependent and abolished by 1 µM H89 (an inhibitor of protein kinase A), 1.25 µM chelerythrine chloride (an inhibitor of protein kinase C), 50 µM PD 98059 (an inhibitor of MEK), 25 µM Ly 294002 (an inhibitor of phosphatidylinositol-3 kinase), 30 nM brefeldin A (an inhibitor of polypeptide release), and 10 µM genistein or 1 ng/ml herbimycin (inhibitors of tyrosine kinase enzymes). The inhibition of muscarinic receptors by 10 µM atropine or 1 µM telenzepine also blocked the effect of forskolin. When we used 25 µM BAPTA, an intracellular calcium chelator, as well as 20 µM 5-fluoro-2'-deoxyuridine, an inhibitor of cell proliferation, we also abolished the effect. Our results indicate that cAMP plays an important role controlling the survival of RGCs. This effect is directly dependent on M1 receptor activation indicating that cholinergic activity mediates the increase in RGC survival. We propose a model which involves cholinergic amacrine cells and glial cells in the increase of RGC survival elicited by forskolin treatment.
Resumo:
The responsiveness of glycogen breakdown to cAMP was investigated in isolated perfused liver from male Wistar fed rats (200-220 g) with insulin-induced hypoglycemia. The activation of glycogenolysis by 3 µM cAMP was decreased (P<0.05) in livers from rats with hypoglycemia induced by the administration of insulin or during the direct infusion of insulin into the isolated liver. The direct effect of insulin on glycogen catabolism promoted by 3 µM cAMP occurred as early as 3 min after starting insulin infusion. In contrast, the cAMP agonists resistant to phosphodiesterases, 8Br-cAMP and 6MB-cAMP, used at the same concentration as cAMP, i.e., 3 µM, did not modify the effect of insulin. The data suggest that the decreased hepatic responsiveness of glycogen breakdown during insulin-induced hypoglycemia is a direct effect of insulin decreasing the intracellular levels of cAMP.
Resumo:
There are only a few studies on the molecular mechanisms underlying the peripheral antihyperalgesic effect of opioids. The aim of this study was to investigate the molecular bases of the peripheral antihyperalgesic effect of fentanyl in a model of prostaglandin-induced chemical hyperalgesia. Prostaglandin E2 (1.4 nmol) injected into one hind paw of male Wistar rats (200-250 g, N = 6 in each experimental or control group) pretreated with indomethacin (2.5 mg/kg) potentiated the nocifensive response to formalin (1%) injection made 60 min later. Drugs applied locally 30 min after prostaglandin E2 induced the following effects: fentanyl (0.1-1.0 nmol) caused a dose-dependent reversal of the hyperalgesic state, naloxone (2 nmol) co-injected with fentanyl (1 nmol) completely reversed the antihyperalgesic effect, Nomega-nitro-L-arginine (NOARG, 0.05-0.2 µmol) in combination with fentanyl (1.0 nmol) caused a dose-dependent inhibition of the antihyperalgesic effect of fentanyl, co-administration of L-arginine (0.5 µmol) with NOARG (0.2 µmol) plus fentanyl (1.0 nmol) fully restored the antihyperalgesic effect, and the cyclic-GMP phosphodiesterase inhibitor UK-114,542-27 (5-[2-ethoxy-5-(morpholinylacetyl) phenyl]-1,6-dihydro-1-methyl-3-propyl-7H-pyrazolo [4,3-d]-pyrimidin-7-one methanesulfonate monohydrate; 0.5-2.0 µmol) potentiated a subeffective dose of fentanyl (0.1 nmol) in a dose-dependent manner. However, UK-114,542-27 (2.0 µmol) injected alone did not produce this antihyperalgesic effect. Systemically administered fentanyl (1.0 nmol, sc) did not cause antinociception. Taken together, these results support the view that fentanyl reverses prostaglandin E2-induced hyperalgesia, probably by activating an opioid receptor at the periphery, and furthermore the L-arginine/nitric oxide/cyclic-GMP pathway may mediate this peripheral effect of fentanyl.